机器学习(ML)在材料领域应用的专题

机器学习在材料领域的应用日益广泛,它能有效降低研发成本,缩短周期,助力新材料的快速发现与设计。从结构分析、性质预测到反向设计,机器学习结合传统方法,为材料科学带来革新。此专题培训针对科研人员,旨在教授机器学习基础知识,实操技能,如数据处理、模型训练,以实现高质量科研成果的产出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

机器学习作为一种兼顾开发效率以及开发成本的方法,已经逐渐应用于材料发现、结构分析、性质预测、反向设计等多个领域,并且在材料学研究中展现出惊人的潜力。传统的发现新材料的方法,如经验试错法和基于密度泛函理论(DFT)的方法,往往需要较长的研发周期,成本高、效率低,已经不能很好的适应如今需求量激增的材料学领域。机器学习因其强大的数据处理能力和相对较低的研究门槛,能够有效地降低工业开发中的人力物力成本,缩短研发周期。代替或配合传统的实验以及计算模拟,能够更加快速且准确的分析材料结构、预测材料性质,从而更加有效的开发新的功能材料。机器学习已在材料、纳米材料设计、化学、生物、医药设计、量子化学金属合金、环境等诸多领域得到广泛的发展,现有机器学习多为计算机方向,无法快速落地到材料方面等科学研究,由于机器学习材料发展缓慢,学习平台文献资料较少。

对象

全国各大高校、企业、科研院所从事、纳米材料、化学化工、计算化学、量子化学、金属合金、非晶新材料、二维材料、钙钛矿、氧化物材料、半导体材料、环境材料、燃烧电池、锂电池、生物材料、聚合物复合材料、能源材料、光电材料、增材制造、催化等研究的科研人员及机器学习爱好者

目标(完全适合零基础)

能够掌握机器学习(ML)在材料研究中的应用,学习理论知识及熟悉代码实操,文章的复现,学会anaconda、Python、pymatgen等软件、以及机器学习数据采集及清洗、分子结构表示及提取、模型训练和测试、性能评估及优化,KNN、线性回归方法,学会机器学习材料预测,材料分类,材料可视化,多种机器学习方法综合预测等操作技能,独自完成自己的课题研究项目,助力发Nature、Science、Angew、Advanc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值