中值定理

前言

对高等数学中值定理部分进行深化学习,欢迎大家一起学习,并提出宝贵意见~

一、中值定理的内容

费马引理
设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某邻域 U ( x 0 ) U(x_0) U(x0)内有定义,并且在 x 0 x_0 x0处可导,如果对任意的 x ∈ U ( x 0 ) x∈U(x_0) xU(x0),有 f ( x ) ≤ f ( x 0 ) f(x)≤f(x_0) f(x)f(x0) f ( x ) ≥ f ( x 0 ) f(x)≥f(x_0) f(x)f(x0),那么 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0

罗尔定理  如果函数 f ( x ) f(x) f(x)满足
         (1)在闭区间 [ a , b ] [a,b] [a,b]上连续;
         (2)在开区间 ( a , b ) (a,b) (a,b)内可导;
         (3)在区间端点处的函数值相等,即 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b).
那么在 ( a , b ) (a,b) (a,b)内至少有一点 ξ ( a < ξ < b ) ξ(a<ξ<b) ξ(a<ξ<b),使得 f ′ ( ξ ) = 0 f'(ξ)=0 f(ξ)=0

拉格朗日中值定理  如果函数 f ( x ) f(x) f(x)满足
         (1)在闭区间 [ a , b ] [a,b] [a,b]上连续;
         (2)在开区间 ( a , b ) (a,b) (a,b)内可导;
那么在 ( a , b ) (a,b) (a,b)内至少有一点 ξ ( a < ξ < b ) ξ(a<ξ<b) ξ(a<ξ<b),使等式
f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b) - f(a) =f'(ξ)(b-a) f(b)f(a)=f(ξ)(ba)成立。

柯西中值定理   如果函数 f ( x ) f(x) f(x) F ( x ) F(x) F(x)满足
         (1)在闭区间 [ a , b ] [a,b] [a,b]上连续;
         (2)在开区间 ( a , b ) (a,b) (a,b)内可导;
         (3)对任一 x ∈ ( a , b ) , F ( x ) ≠ 0 , x∈(a,b),F(x)≠0, x(a,b),F(x)=0,
那么在 ( a , b ) (a,b) (a,b)内至少有一点 ξ ξ ξ,使等式
f ( b ) − f ( a ) F ( b ) − F ( a ) = f ’ ( ξ ) F ′ ( x ) \frac{f(b) - f(a)}{F(b) - F(a)} =\frac{f’(ξ)}{ F'(x)} F(b)F(a)f(b)f(a)=F(x)f(ξ)成立。

泰勒中值定理   如果函数 f ( x ) f(x) f(x)在含有某个开区间 ( a , b ) (a,b) (a,b)内具有直到(n+1)阶的导数,则对任一 x ∈ ( a , b ) x∈(a,b) x(a,b),有
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . + f n ( x 0 ) n ! + R n ( x ) f(x)=f(x_0)+f'(x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+...+\frac{f^n(x_0)}{n!}+R_n(x) f(x)=f(x0)+f(x0)+2!f′′(x0)(xx0)2+...+n!fn(x0)+Rn(x)其中, R n ( x ) = f n + 1 ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 R_n(x)=\frac{f^{n+1}(\xi)}{(n+1)!}(x-x_0)^{n+1} Rn(x)=(n+1)!fn+1(ξ)(xx0)n+1,这里 ξ \xi ξ x 0 x_0 x0 x x x之间的某个值.

定积分中值定理  如果函数 f ( x ) f(x) f(x)在积分区间 [ a , b ] [a,b] [a,b]上连续,则在 [ a , b ] [a,b] [a,b]上至少存在一个点 ξ ξ ξ,使得下式成立:
∫ a b f ( x )   d x = f ( ξ ) ( b − a ) \int_a^b {f(x)} \,{\rm d}x=f(\xi)(b-a) abf(x)dx=f(ξ)(ba)
二重积分中值定理 设函数 f ( x , y ) f(x,y) f(x,y)在闭区域 D D D上连续, σ \sigma σ D D D的面积,则在 D D D上至少存在一点 ( ξ , η ) (\xi,\eta) (ξ,η),使得
∬ D f ( x , y )   d σ = f ( ξ , η ) ⋅ σ \iint_D {f(x,y)} \,{\rm d}\sigma=f(\xi,\eta)\cdot\sigma Df(x,y)dσ=f(ξ,η)σ

三重积分中值定理 设函数 f ( x , y , z ) f(x,y,z) f(x,y,z) Ω \Omega Ω上连续, V V V Ω \Omega Ω的面积,则在 D D D上至少存在一点 ( ξ , η ) (\xi,\eta) (ξ,η),使得
∭ Ω f ( x , y , z )   d V = f ( ξ , η , ζ ) ⋅ V \iiint_\Omega {f(x,y,z)} \,{\rm d}V=f(\xi,\eta,\zeta)\cdot V Ωf(x,y,z)dV=f(ξ,η,ζ)V


二、微分中值定理之间的关系


①推广:罗尔定理 ⟹ \Longrightarrow 拉格朗日中值定理 ⟹ \Longrightarrow 柯西中值定理

②特例:柯西中值定理+( f ( x ) = x f(x)=x f(x)=x) ⟹ \Longrightarrow 拉格朗日中值定理
      拉格朗日中值定理+ ( f ( a ) = f ( b ) ) (f(a)=f(b)) (f(a)=f(b)) ⟹ \Longrightarrow 罗尔定理

③泰勒中值定理是拉格朗日中值定理的推广。

三、泰勒中值定理推导过程


①产生泰勒中值定理的原因:为解决在微分中近似表达式精确度不高,误差大小无法比较,无法计算误差公式等。
例: e x ≈ 1 + x e^x≈1+x ex1+x,  l n ( x + 1 ) ≈ x ln(x+1)≈x ln(x+1)x

②科学家提出一个想法——做误差公式:误差=原函数 f ( x ) − f(x)- f(x)构造函数 p n ( x ) p_n(x) pn(x)
下面借用高等数学课本上的一段证明过程:

再证明泰勒中值定理,只要 R n ( x ) = f ( x ) − p n ( x ) R_n(x)=f(x)-p_n(x) Rn(x)=f(x)pn(x),即公式中所说的,
R n ( x ) = f n + 1 ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 , ( ξ 在 x 0 与 x 之间 ) R_n(x)=\frac{f^{n+1}(\xi)}{(n+1)!}(x-x_0)^{n+1},(\xi 在x_0与x之间) Rn(x)=(n+1)!fn+1(ξ)(xx0)n+1,(ξx0x之间) x = x 0 x=x_0 x=x0,
( x − x 0 ) = 0 (x-x_0)=0 (xx0)=0,(前面假设 R n ( x 0 ) R_n(x_0) Rn(x0) ( a , b ) (a,b) (a,b)具有直到 ( n + 1 ) (n+1) (n+1)阶的导数),则
R n ( x 0 ) = R n ′ ( x 0 ) = R n ′ ′ ( x 0 ) = . . . = R n n ( x 0 ) = 0 R_n(x_0)=R_n'(x_0)=R_n''(x_0)=...=R_n^{n}(x_0)=0 Rn(x0)=Rn(x0)=Rn′′(x0)=...=Rnn(x0)=0
使用柯西中值定理,令 g ( x ) = R n ( x ) , F ( x ) = ( x − x 0 ) n + 1 g(x)=R_n(x),F(x)=(x-x_0)^{n+1} g(x)=Rn(x),F(x)=(xx0)n+1,在以 x 0 x_0 x0 x x x为端点的区间上进行使用,得:
R n ( x ) ( x − x 0 ) n + 1 = R n ( x ) − R n ( x 0 ) ( x − x 0 ) n + 1 − 0 = R n ′ ( ξ 1 ) ( ξ 1 − x 0 ) n ( ξ 1 在 x 0 与 x 之间 ) \frac{R_n(x)}{(x-x_0)^{n+1}}=\frac{R_n(x)-R_n(x_0)}{(x-x_0)^{n+1}-0}=\frac{R_n'(\xi_1)}{(\xi_1-x_0)^n}(\xi _1在x_0与x之间) (xx0)n+1Rn(x)=(xx0)n+10Rn(x)Rn(x0)=(ξ1x0)nRn(ξ1)(ξ1x0x之间)
再对两个函数 R n ′ ( x ) R_n'(x) Rn(x) ( n + 1 ) ( x − x 0 ) n (n+1)(x-x_0)^n (n+1)(xx0)n使用柯西中值定理,即得
R n ′ ( ξ 1 ) ( ξ 1 − x 0 ) n = R n ′ ( ξ 1 ) − R n ′ ( x 0 ) ( ξ 1 − x 0 ) n + 1 − 0 = R n ′ ( ξ 2 ) ( ξ 2 − x 0 ) n − 1 ( ξ 2 在 x 0 与 ξ 1 之间 ) \frac{R_n'(\xi_1)}{(\xi_1-x_0)^n}=\frac{R_n'(\xi_1)-R_n'(x_0)}{(\xi_1-x_0)^{n+1}-0}=\frac{R_n'(\xi_2)}{(\xi_2-x_0)^{n-1}}(\xi _2在x_0与\xi _1之间) (ξ1x0)nRn(ξ1)=(ξ1x0)n+10Rn(ξ1)Rn(x0)=(ξ2x0)n1Rn(ξ2)(ξ2x0ξ1之间)
注意前边的条件无论求几阶导,都有Rn(x)的n阶导数等于0。
照此方法,进行 ( n + 1 ) (n+1) (n+1)次后,得
R n ( x ) ( x − x 0 ) n + 1 = R n ( n + 1 ) ( ξ ) ( n + 1 ) ! ( ξ 在 x 0 与 ξ n 之间 , 因而也在 x 0 与 x 之间 ) \frac{R_n(x)}{(x-x_0)^{n+1}}=\frac{R_n^{(n+1)}(\xi)}{(n+1)!}(\xi在x_0与\xi _n之间,因而也在x_0与x之间) (xx0)n+1Rn(x)=(n+1)!Rn(n+1)(ξ)(ξx0ξn之间,因而也在x0x之间)
看泰勒中值定理里的 f ( x ) f(x) f(x),对它求 ( n + 1 ) (n+1) (n+1)阶导,前边的n项将都变为0,即得
R n ( n + 1 ) ( x ) = f n + 1 ( x ) R_n^{(n+1)}(x)=f^{n+1}(x) Rn(n+1)(x)=fn+1(x),即得
R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 ( ξ 在 x 0 与 x 之间 ) R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}(\xi 在x_0与x之间) Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1(ξx0x之间)
定理证明完成。
还有一部分关于拉格朗日余型、佩亚诺余型和麦克劳林公式未再展开叙述,有关部分可参考高等数学上册,进行学习研究。

四、带有拉格朗日余项的n阶麦克劳林公式

s i n x = x − 1 3 ! x 3 + 1 5 ! x 5 − . . . + ( − 1 ) m − 1 1 ( 2 m − 1 ) ! x 2 m − 1 + R 2 m ( x ) sinx=x-\frac{1}{3!}x^3+\frac{1}{5!}x^5-...+(-1)^{m-1}\frac{1}{(2m-1)!}x^{2m-1}+R_{2m}(x) sinx=x3!1x3+5!1x5...+(1)m1(2m1)!1x2m1+R2m(x)

c o s x = 1 − 1 2 ! x 2 + 1 4 ! x 4 − . . . + ( − 1 ) m 1 ( 2 m ) ! x 2 m + R 2 m + 1 ( x ) cosx=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4-...+(-1)^{m}\frac{1}{(2m)!}x^{2m}+R_{2m+1}(x) cosx=12!1x2+4!1x4...+(1)m(2m)!1x2m+R2m+1(x)

e x = 1 + x + 1 2 ! x 2 + . . . + 1 n ! x n + R n ( x ) e^x=1+x+\frac{1}{2!}x^2+...+\frac{1}{n!}x^n+R_n(x) ex=1+x+2!1x2+...+n!1xn+Rn(x)

l n ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − . . . + ( − 1 ) n − 1 1 n x n + R n ( x ) ln(1+x)=x-\frac{1}{2}x^2+\frac{1}{3}x^3-...+(-1)^{n-1} \frac{1}{n}x^n+R_n(x) ln(1+x)=x21x2+31x3...+(1)n1n1xn+Rn(x)

( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + . . . + α ( α − 1 ) . . . ( α − n + 1 ) n ! x n + R n ( x ) (1+x)^\alpha=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+...+\frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!}x^n+R_n(x) (1+x)α=1+αx+2!α(α1)x2+...+n!α(α1)...(αn+1)xn+Rn(x)

1 1 − x = 1 + x + x 2 + . . . + x n + R n ( x ) \frac{1}{1-x}=1+x+x^2+...+x^n+R_n(x) 1x1=1+x+x2+...+xn+Rn(x)

1 1 + x = 1 − x + x 2 − . . . + ( − 1 ) n x n + R n ( x ) \frac{1}{1+x}=1-x+x^2-...+(-1)^nx^n+R_n(x) 1+x1=1x+x2...+(1)nxn+Rn(x)

a r c t a n x = x − 1 3 x 3 + 1 5 x 5 − . . . + ( − 1 ) n 1 2 n + 1 x 2 n + 1 + R n ( x ) arctanx=x-\frac{1}{3}x^3+\frac{1}{5}x^5-...+(-1)^n\frac{1}{2n+1}x^{2n+1}+R_n(x) arctanx=x31x3+51x5...+(1)n2n+11x2n+1+Rn(x)

t a n x = x + 1 3 x 2 + 2 15 x 5 + o ( x 5 ) tanx=x+\frac{1}{3}x^2+\frac{2}{15}x^5+o(x^5) tanx=x+31x2+152x5+o(x5)

a r c s i n x = x + 1 6 x 3 + o ( x 3 ) arcsinx=x+\frac{1}{6}x^3+o(x^3) arcsinx=x+61x3+o(x3)

余项的公式没有展开写。

五、罗尔中值定理作辅助函数部分记录


  (1) [ x n f ( x ) ] ′ = n x n − 1 f ( x ) + x n f ′ ( x ) = 0 [x^{n}f(x)]^{'}=nx^{n-1}f(x)+x^nf^{'}(x)=0 [xnf(x)]=nxn1f(x)+xnf(x)=0
          ⇒ n f ( x ) + x f ′ ( x ) = 0 \Rightarrow nf(x)+xf^{'}(x)=0 nf(x)+xf(x)=0

  (2) [ e ± λ x f ( x ) ] ′ = ± λ e ± λ x f ( x ) + λ e ± λ x f ′ ( x ) = 0 [e^{\pm\lambda x}f(x)]^{'}=\pm\lambda e^{\pm\lambda x}f(x)+\lambda e^{\pm\lambda x}f^{'}(x)=0 [e±λxf(x)]=±λe±λxf(x)+λe±λxf(x)=0
          ⇒ ± λ f ( x ) + f ′ ( x ) = 0 \Rightarrow \pm\lambda f(x)+f^{'}(x)=0 ±λf(x)+f(x)=0

  (3)乘以 x n x^n xn e ± λ x e^{\pm\lambda x} e±λx

  • 28
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值