四、空间解析几何(高数)

文章仅作学习记录使用

四、空间解析几何(高数)

1.向量代数

既有大小又有方向的量称为向量
a = ( a x , a y , a z ) =(a_x,a_y,a_z) =(ax,ay,az),b = ( b x , b y , b z ) =(b_x,b_y,b_z) =(bx,by,bz),c = ( c x , c y , c z ) =(c_x,c_y,c_z) =(cx,cy,cz),a,b,c均不是零向量。
数学上研究的是自由向量,其特点是与起点无关,简称为大家所熟悉的“向量”。
方向角与方向余弦
非零向量 a \bm a a与三条坐标轴的夹角 α , β , γ \alpha,\beta,\gamma α,β,γ称为 r \bm r r的方向角。设 a = ( x , y , z ) \bm a=(x,y,z) a=(x,y,z)则, cos ⁡ α = x ∣ a ∣ , cos ⁡ β = y ∣ a ∣ , cos ⁡ γ = z ∣ a ∣ cos ⁡ α 2 + cos ⁡ β 2 + cos ⁡ γ 2 = 1 ( cos ⁡ α , cos ⁡ β , cos ⁡ γ ) = a ⃗ ∣ a ⃗ ∣ = a 0 \cos \alpha=\frac{x}{|\bm a|},\cos \beta=\frac{y}{|\bm a|},\cos \gamma=\frac{z}{|\bm a|}\\[2ex] \cos \alpha^{2}+\cos \beta^{2}+\cos \gamma^{2}=1\\[2ex] (\cos \alpha,\cos \beta,\cos \gamma)=\frac{\vec{a}}{|\vec{a}|}=\bm{a^{0}} cosα=axcosβ=aycosγ=azcosα2+cosβ2+cosγ2=1(cosα,cosβ,cosγ)=a a =a0 a 0 \bm{a^0} a0即表示与 a ⃗ \vec{a} a 同方向的单位向量。

(1)数量积

a ⋅ b = ( a x , a y , a z ) ⋅ ( b x , b y , b z ) = a x b x + a y b y + a z b z (4.1) \bm a\cdot\bm b=(a_x,a_y,a_z)\cdot (b_x,b_y,b_z)=a_xb_x+a_yb_y+a_zb_z\tag{4.1} ab=(ax,ay,az)(bx,by,bz)=axbx+ayby+azbz(4.1)
a ⋅ b = ∣ a ∣ ∣ b ∣ cos ⁡ θ = a ⋅ b ∣ a ⃗ ∣ ∣ b ⃗ ∣ = a x b x + a y b y + a z b z a x 2 + a y 2 + a z 2 + b x 2 + b y 2 + b z 2 (4.2) \bm a\cdot\bm b=|\bm a||\bm b|\cos \theta=\frac{\bm a \cdot \bm b}{|\vec a||\vec b|}=\frac{a_xb_x+a_yb_y+a_zb_z}{\sqrt{a^2_x+a^2_y+a^2_z}+\sqrt{b^2_x+b^2_y+b^2_z}}\tag{4.2} ab=a∣∣bcosθ=a ∣∣b ab=ax2+ay2+az2 +bx2+by2+bz2 axbx+ayby+azbz(4.2)公式4.2为数量积的定义式, θ \theta θ a , b \bm{a,b} a,b的夹角。
垂直 a ⋅ b = 0 \quad a\cdot b=0 ab=0
a ⊥ b ⇔ θ = π 2 ⇔ ∣ a ⃗ ∣ ∣ b ⃗ ∣ cos ⁡ θ = 0 ⇔ a x b x + a y b y + a z b z = 0 (4.3) \quad\bm a\perp \bm b \Leftrightarrow \theta=\frac{\pi}{2}\Leftrightarrow|\vec a||\vec b|\cos \theta=0\Leftrightarrow a_xb_x+a_yb_y+a_zb_z=0\tag{4.3} abθ=2πa ∣∣b cosθ=0axbx+ayby+azbz=0(4.3)
投影
P r j b a = a ⃗ ⋅ b ⃗ ∣ b ⃗ ∣ = a ⃗ ⋅ b ⃗ ∣ a ⃗ ∣ ∣ b ⃗ ∣ = a x b x + a y b y + a z b z b x 2 + b y 2 + b z 2 (4.4) Prj_ba=\frac{\vec a \cdot \vec b}{|\vec b|}=\frac{\vec a \cdot \vec b}{|\vec a||\vec b|}=\frac{a_xb_x+a_yb_y+a_zb_z}{\sqrt{b^2_x+b^2_y+b^2_z}}\tag{4.4} Prjba=b a b =a ∣∣b a b =bx2+by2+bz2 axbx+ayby+azbz(4.4)称为ab上的投影。

(2)向量积

a × b = ( i j k a x a y a z b x b y b z ) (4.5) \bm{a}\times \bm{b}=\left(\begin{matrix} \bf{i} & \bf{j} & \bf{k} \\a_x & a_y & a_z \\b_x & b_y & b_z \end{matrix}\right)\tag{4.5} a×b= iaxbxjaybykazbz (4.5)其中 ∣ a × b ∣ = ∣ a ∣ ∣ b ∣ sin ⁡ θ |\bm{a}\times\bm{b}|=|\bm{a}||\bm{b}|\sin \theta a×b=a∣∣bsinθ,用右手规则确定方向(转向角不超过 π \pi π), θ \theta θ a , b \bm{a,b} a,b的夹角。

平行 a × b = 0 \quad\bm{a}\times\bm{b}=0 a×b=0

a / / b ⇔ θ = 0 或 π ⇔ a x b x = a y b y = a z b z \bm{a}//\bm{b}\Leftrightarrow\theta=0或\pi \Leftrightarrow \frac{a_x}{b_x}=\frac{a_y}{b_y}=\frac{a_z}{b_z} a//bθ=0πbxax=byay=bzaz

(3)混合积

①公式: [ a b c ] = ( a × b ) ⋅ c = ∣ a x a y a z b x b y b z c x c y c z ∣ [\bold{abc}]=(\bold{a}\times\bold{b})\cdot\bold{c}=\left| \begin{array}{} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{array}\right| [abc]=(a×b)c= axbxcxaybycyazbzcz

②三向量共面 ⟺ ∣ a x a y a z b x b y b z c x c y c z ∣ = 0 \Longleftrightarrow\left| \begin{array}{} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{array}\right|=0 axbxcxaybycyazbzcz =0

③根据行列式性质2
互换行列式的两行(或列),行列式变号。
3个向量进行混合积运算,其行列式的三行即为3个向量的坐标(x,y,z),不同只在于3个向量所在位置不同,换行两次即可实现完全相同,故可以推断出以下公式:
   ( a × b ) ⋅ c = ( b × c ) ⋅ a (\bold{a}\times\bold{b})\cdot\bold{c}=(\bold{b}\times\bold{c})\cdot\bold{a} (a×b)c=(b×c)a
同样的还有:
   ( c × a ) ⋅ b = ( a × b ) ⋅ c (\bold{c}\times\bold{a})\cdot\bold{b}=(\bold{a}\times\bold{b})\cdot\bold{c} (c×a)b=(a×b)c

(4)向量的方向角和方向余弦

(1) a ⃗ \vec{a} a 与x轴、y轴、z轴的正向的夹角 α 、 β 、 γ \alpha 、\beta、\gamma αβγ称为 a ⃗ \vec{a} a 方向角

(2) cos ⁡ α 、 cos ⁡ β 、 cos ⁡ γ \cos \alpha 、\cos \beta 、\cos \gamma cosαcosβcosγ称为 a ⃗ \vec{a} a 的方向余弦,且 cos ⁡ α = a x a , cos ⁡ β = a y a , cos ⁡ γ = a z a \cos \alpha=\frac{a_x}{\bm{a}},\cos \beta =\frac{a_y}{\bm{a}},\cos \gamma=\frac{a_z}{\bm{a}} cosα=aax,cosβ=aay,cosγ=aaz

(3) a 0 = a ∣ a ∣ = ( cos ⁡ α , cos ⁡ β , cos ⁡ γ ) \bm{a}^0=\frac{\bm{a}}{|\bm{a}|}=(\cos \alpha ,\cos \beta,\cos \gamma) a0=aa=(cosα,cosβ,cosγ)称为向量 a ⃗ \vec{a} a 的单位向量(表示方向的向量)。

(4)任意向量 r = x i + y j + z k = ( r cos ⁡ α , r cos ⁡ β , r cos ⁡ γ ) = r ( cos ⁡ α , cos ⁡ β , cos ⁡ γ ) \bm{r}=x\bm{i}+y\bm{j}+z\bm{k}=(r\cos \alpha ,r\cos \beta,r\cos \gamma)=r(\cos \alpha ,\cos \beta,\cos \gamma) r=xi+yj+zk=(rcosα,rcosβ,rcosγ)=r(cosα,cosβ,cosγ),其中 cos ⁡ α , cos ⁡ β , cos ⁡ γ \displaystyle \cos \alpha ,\cos \beta,\cos \gamma cosα,cosβ,cosγ r \bm{r} r的方向余弦,r为 r \bm{r} r的模, cos ⁡ α = x x 2 + y 2 + z 2 , cos ⁡ β = y x 2 + y 2 + z 2 , cos ⁡ γ = z x 2 + y 2 + z 2 , r = x 2 + y 2 + z 2 \cos \alpha =\frac{x}{\sqrt{x^2+y^2+z^2}},\cos \beta=\frac{y}{\sqrt{x^2+y^2+z^2}},\cos \gamma=\frac{z}{\sqrt{x^2+y^2+z^2}},\bm{r}=\sqrt{x^2+y^2+z^2} cosα=x2+y2+z2 x,cosβ=x2+y2+z2 y,cosγ=x2+y2+z2 z,r=x2+y2+z2


2.空间平面与直线

(1)平面方程

以下假设平面的法向量 n = ( A , B , C ) \bm{n}=(A,B,C) n=(A,B,C),平面的方程为以下四种:
①一般式: A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0

②点法式: A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 \displaystyle A(x-x_0)+B(y-y_0)+C(z-z_0)=0 A(xx0)+B(yy0)+C(zz0)=0

③三点式: ∣ x − x 1 y − y 1 z − z 1 x − x 2 y − y 2 z − z 2 x − x 3 y − y 3 z − z 3 ∣ = 0 \left|\begin{array}{} x-x_1 & y-y_1 &z-z_1\\ x-x_2 & y-y_2 &z-z_2\\ x-x_3 & y-y_3 &z-z_3 \end{array}\right|=0 xx1xx2xx3yy1yy2yy3zz1zz2zz3 =0(平面过不共线的三点 P ( x i , y i , z i ) , i = 1 , 2 , 3 \bm{P}(x_i,y_i,z_i),i=1,2,3 P(xi,yi,zi),i=1,2,3)

注释:设 P ( x , y , z ) P(x,y,z) P(x,y,z)为平面 π \pi π上任一点,则 P P 1 → , P P 2 → , P P 3 → , \overrightarrow{PP_1},\overrightarrow{PP_2},\overrightarrow{PP_3}, PP1 ,PP2 ,PP3 ,三个向量共面,则其混合积 ( P P 1 → × P P 2 → ) ⋅ P P 3 → = 0 , (\overrightarrow{PP_1}\times\overrightarrow{PP_2})\cdot\overrightarrow{PP_3}=0, (PP1 ×PP2 )PP3 =0,可得三点式平面方程。

④截距式: x a + y b + z c = 1 \displaystyle\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 ax+by+cz=1(平面过 ( a , 0 , 0 ) , ( 0 , b , 0 ) , ( 0 , 0 , c ) (a,0,0),(0,b,0),(0,0,c) (a,0,0),(0,b,0),(0,0,c)三点)

⑤平面族方程
通过直线 l : { A 1 x + B 1 y + C 1 z + D 1 = 0 , A 2 x + B 2 y + C 2 z + D 2 = 0 l:\begin{cases} A_1x+B_1y+C_1z+D_1=0,\\ A_2x+B_2y+C_2z+D_2=0 \end{cases} l:{A1x+B1y+C1z+D1=0,A2x+B2y+C2z+D2=0的平面族方程为 A 1 x + B 1 y + C 1 z + D 1 + λ ( A 2 x + B 2 y + C 2 z + D 2 ) = 0 A_1x+B_1y+C_1z+D_1+\lambda(A_2x+B_2y+C_2z+D_2)=0 A1x+B1y+C1z+D1+λ(A2x+B2y+C2z+D2)=0其中平面 A 2 x + B 2 y + C 2 z + D 2 = 0 A_2x+B_2y+C_2z+D_2=0 A2x+B2y+C2z+D2=0不在平面族方程内。

(2)直线方程

以下假设直线的方向向量 τ = ( l , m , n ) \tau=(l,m,n) τ=(l,m,n)

①一般式: { A 1 x + B 1 y + C 1 z + D 1 = 0 , n 1 = ( A 1 , B 1 , C 1 ) , A 2 x + B 2 y + C 2 z + D 2 = 0 , n 2 = ( A 2 , B 2 , C 2 ) , \begin{cases} A_1x+B_1y+C_1z+D_1=0,\bm{n}_1=(A_1,B_1,C_1),\\ A_2x+B_2y+C_2z+D_2=0,\bm{n}_2=(A_2,B_2,C_2), \end{cases} {A1x+B1y+C1z+D1=0,n1=(A1,B1,C1),A2x+B2y+C2z+D2=0,n2=(A2,B2,C2),其中 n 1 \bm{n}_1 n1不平行于 n 2 \bm{n}_2 n2
(一般式是由两个平面相交产生的直线,两个等式分别对应两个平面公式)

②点向式: x − x 0 l = y − y 0 m = z − z 0 n \displaystyle\frac{x-x_0}{l}=\frac{y-y_0}{m}=\frac{z-z_0}{n} lxx0=myy0=nzz0

③参数式: { x = x 0 + l t y = y 0 + m t z = z 0 + n t \displaystyle\begin{cases} x=x_0+lt\\ y=y_0+mt\\ z=z_0+nt \end{cases} x=x0+lty=y0+mtz=z0+nt, M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0)为直线上的已知点, t t t为参数。

④两点式: x − x 1 x 2 − x 1 = y − y 1 y 2 − y 1 = z − z 1 z 2 − z 1 \displaystyle\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1} x2x1xx1=y2y1yy1=z2z1zz1(直线过不同的两点 P i ( x i , y i , z i ) , i = 1 , 2 \bm P_i(x_i,y_i,z_i),i=1,2 Pi(xi,yi,zi),i=1,2

(3)位置关系

距离
P \bm P P到平面 A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0的距离 d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 \displaystyle d=\frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}} d=A2+B2+C2 Ax0+By0+Cz0+D

直线间的关系
τ 1 = ( l 1 , m 1 , n 1 ) , τ 2 = ( l 2 , m 2 , n 2 ) \tau_1=(l_1,m_1,n_1),\tau_2=(l_2,m_2,n_2) τ1=(l1,m1,n1),τ2=(l2,m2,n2)分别为直线 L 1 , L 2 L_1,L_2 L1,L2的方向向量。

垂直: L 1 ⊥ L 2 ⇔ τ 1 ⊥ τ 2 ⇔ l 1 l 2 + m 1 m 2 + n 1 n 2 = 0 平行: L 1 ∥ L 2 ⇔ τ 1 ∥ τ 2 ⇔ l 1 l 2 = m 1 m 2 = n 1 n 2 \displaystyle 垂直:L_1\perp L_2\Leftrightarrow \tau_1 \perp \tau_2 \Leftrightarrow l_1l_2+m_1m_2+n_1n_2=0\\[2ex] 平行:L_1\parallel L_2\Leftrightarrow \tau_1 \parallel \tau_2 \Leftrightarrow\frac{l_1}{l_2}= \frac{m_1}{m_2}= \frac{n_1}{n_2} 垂直:L1L2τ1τ2l1l2+m1m2+n1n2=0平行:L1L2τ1τ2l2l1=m2m1=n2n1

平面间的关系
设平面 π 1 , π 2 \pi_1,\pi_2 π1,π2的法向量分别为 n 1 = ( A 1 , B 1 , C 1 ) , n 2 = ( A 2 , B 2 , C 2 ) \bm n_1=(A_1,B_1,C_1),\bm n_2=(A_2,B_2,C_2) n1=(A1,B1,C1),n2=(A2,B2,C2)

垂直: π 1 ⊥ π 2 ⇔ n 1 ⊥ n 2 ⇔ A 1 A 2 + B 1 B 2 + C 1 C 2 = 0 平行: π 1 ∥ π 2 ⇔ n 1 ∥ n 2 ⇔ A 1 A 2 = B 1 B 2 = C 1 C 2 \displaystyle垂直:\pi_1\perp \pi_2\Leftrightarrow \bm n_1 \perp \bm n_2 \Leftrightarrow A_1A_2+B_1B_2+C_1C_2=0\\[2ex] 平行:\pi_1\parallel \pi_2\Leftrightarrow \bm n_1 \parallel \bm n_2 \Leftrightarrow\frac{A_1}{A_2}= \frac{B_1}{B_2}= \frac{C_1}{C_2} 垂直:π1π2n1n2A1A2+B1B2+C1C2=0平行:π1π2n1n2A2A1=B2B1=C2C1

平面与直线的关系
设直线 L L L的方向向量为 τ = ( l , m , n ) \tau=(l,m,n) τ=(l,m,n),平面的法向量为 n = ( A , B , C ) \bm n=(A,B,C) n=(A,B,C)

垂直: L ⊥ π ⇔ τ ∥ n ⇔ A l = B m = C n 平行: L ∥ π ⇔ τ ⊥ n ⇔ A l + B m + C n = 0 \displaystyle 垂直:L\perp \pi\Leftrightarrow \tau \parallel \bm n \Leftrightarrow \frac{A}{l}= \frac{B}{m}= \frac{C}{n}\\[2ex] 平行:L\parallel \pi \Leftrightarrow \tau \perp\bm n \Leftrightarrow Al+Bm+Cn=0 垂直:LπτnlA=mB=nC平行:LπτnAl+Bm+Cn=0

线线①、面面②的位置公式一一对应,而线面③的位置公式互相反转,仅记住相反的③即可。 \color{#8B8989}{线线①、面面②的位置公式一一对应,而线面③的位置公式互相反转,仅记住相反的③即可。} 线线、面面的位置公式一一对应,而线面的位置公式互相反转,仅记住相反的即可。


3.空间曲线与曲面

(1)空间曲线

①一般式: Γ : { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \Gamma :\begin{cases} F(x,y,z)=0\\ G(x,y,z)=0 \end{cases} Γ:{F(x,y,z)=0G(x,y,z)=0其几何背景为两个曲面的交线。

②参数方程: Γ : { x = φ ( t ) , y = ψ ( t ) , z = ω ( t ) , t ∈ [ α , β ] \Gamma :\begin{cases} x=\varphi(t),\\ y=\psi(t),\\ z=\omega(t), \end{cases}t\in[\alpha,\beta] Γ: x=φ(t),y=ψ(t),z=ω(t),t[α,β]

③空间曲线在坐标面上的投影
以求曲线 Γ \Gamma Γ在平面上的投影曲线为例:
Γ : { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \Gamma: \begin{cases} F(x,y,z)=0\\ G(x,y,z)=0 \end{cases} Γ:{F(x,y,z)=0G(x,y,z)=0中的 z z z消去,得到 φ ( x , y ) = 0 \varphi(x,y)=0 φ(x,y)=0,
则曲线 Γ \Gamma Γ x O y xOy xOy面上的投影曲线包含于曲线 { φ ( x , y ) = 0. z = 0. \begin{cases} \varphi (x,y)=0.\\ z=0. \end{cases} {φ(x,y)=0.z=0.

曲线 Γ \Gamma Γ在其他平面上的投影曲线可类似求得。

(2)空间曲面

(1)曲面方程: F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0
(2)二次曲面
请添加图片描述
请添加图片描述
(3)柱面:动直线沿定曲线平行移动所形成的曲面

椭圆柱面 x 2 a 2 + y 2 b 2 = 1 \displaystyle\quad\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1

双曲柱面 x 2 a 2 − y 2 b 2 = 1 \displaystyle\quad\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 a2x2b2y2=1

抛物柱面 y = a x 2 \displaystyle\quad y=ax^2 y=ax2
注:在空间解析几何中,一般认为缺少变量的方程为柱面。
(4)旋转曲面(重点):曲线 Γ \Gamma Γ绕一条定直线旋转一周所形成的曲面。
曲线 Γ : { F ( x , y , z ) = 0 , G ( x , y , z ) = 0 \Gamma:\begin{cases} F(x,y,z)=0,\\ G(x,y,z)=0 \end{cases} Γ:{F(x,y,z)=0,G(x,y,z)=0绕直线 L : x − x 0 m = y − y 0 n = z − z 0 p \displaystyle L:\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p} L:mxx0=nyy0=pzz0旋转形成一个曲面,旋转曲面的求法如下:

如图所示,已知 M 0 ( x 0 , y 0 , z 0 ) M_0(x_0,y_0,z_0) M0(x0,y0,z0),方向向量 s ⃗ = ( m , n , p ) . \vec{s}=(m,n,p). s =(m,n,p).在母线 Γ \Gamma Γ上任取一点 M 1 ( x 1 , y 1 , z 1 ) M_1(x_1,y_1,z_1) M1(x1,y1,z1),则过 M 1 M_1 M1的维圆上的任意一点 P ( x , y , z ) P(x,y,z) P(x,y,z)满足条件 M 1 P → ⊥ s , ∣ M 1 P → ∣ = ∣ M 0 M 1 → ∣ \overrightarrow{M_1P} \perp \bm s,|\overrightarrow{M_1P} |=|\overrightarrow{M_0M_1}| M1P s,M1P =M0M1 ,即 { m ( x − x 1 ) + n ( y − y 1 ) + p ( z − z 1 ) = 0 ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 = ( x 1 − x 0 ) 2 + ( y 1 − y 0 ) 2 + ( z 1 − z 0 ) 2 , \displaystyle\begin{cases} m(x-x_1)+n(y-y_1)+p(z-z_1)=0\\ (x-x_0)^2+(y-y_0)^2+(z-z_0)^2=(x_1-x_0)^2+(y_1-y_0)^2+(z_1-z_0)^2, \end{cases} {m(xx1)+n(yy1)+p(zz1)=0(xx0)2+(yy0)2+(zz0)2=(x1x0)2+(y1y0)2+(z1z0)2,与方程 F ( x 1 , y 1 , z 1 ) = 0 F(x_1,y_1,z_1)=0 F(x1,y1,z1)=0 G ( x 1 , y 1 , z 1 ) = 0 G(x_1,y_1,z_1)=0 G(x1,y1,z1)=0联立消去 x 1 , y 1 , z 1 , x_1,y_1,z_1, x1,y1,z1,便可得到旋转曲面的方程。


4.多元函数微分学的几何应用

(1)空间曲线的切线与法平面

(1)设空间曲线 Γ \Gamma Γ由参数方程 { x = φ ( t ) , y = ψ ( t ) , z = ω ( t ) \begin{cases} x=\varphi(t),\\ y=\psi(t),\\ z=\omega(t) \end{cases} x=φ(t),y=ψ(t),z=ω(t)给出,其中 φ ( t ) , ψ ( t ) , ω ( t ) \varphi(t),\psi(t),\omega(t) φ(t),ψ(t),ω(t)均可导,

P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0) Γ \Gamma Γ上的点,且当 t = t 0 t=t_0 t=t0时, φ ′ ( t 0 ) , ψ ′ ( t 0 ) , ω ′ ( t 0 ) \varphi^{'}(t_0),\psi^{'}(t_0),\omega ^{'}(t_0) φ(t0),ψ(t0),ω(t0)都不为0,则

①曲线 Γ \Gamma Γ在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)处的切向量为 τ = ( φ ′ ( t 0 ) , ψ ′ ( t 0 ) , ω ′ ( t 0 ) ) \tau =(\varphi^{'}(t_0),\psi^{'}(t_0),\omega ^{'}(t_0)) τ=(φ(t0),ψ(t0),ω(t0)).

②曲线 Γ \displaystyle\Gamma Γ在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)处的切线方程为 x − x 0 φ ′ ( t 0 ) = y − y 0 ψ ′ ( t 0 ) = z − z 0 ω ′ ( t 0 ) \frac{x-x_0}{\varphi^{'}(t_0)}=\frac{y-y_0}{\psi^{'}(t_0)}=\frac{z-z_0}{\omega ^{'}(t_0)} φ(t0)xx0=ψ(t0)yy0=ω(t0)zz0.

③曲线 Γ \Gamma Γ在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)处的法平面(过点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)且与切线垂直的平面)方程为 ψ ′ ( t 0 ) ( x − x 0 ) + φ ′ ( t 0 ) ( y − y 0 ) + ω ′ ( t 0 ) ( z − z 0 ) = 0 \displaystyle\psi^{'}(t_0)(x-x_0)+\varphi^{'}(t_0)(y-y_0)+\omega^{'}(t_0)(z-z_0)=0 ψ(t0)(xx0)+φ(t0)(yy0)+ω(t0)(zz0)=0

(2)设空间曲线 Γ \Gamma Γ由交面式方程 { F ( x , y , z ) = 0 , G ( x , y , z ) = 0 \begin{cases} F(x,y,z)=0,\\ G(x,y,z)=0 \end{cases} {F(x,y,z)=0,G(x,y,z)=0给出,则在以下表达式有意义的条件下,有

①曲线 Γ \Gamma Γ在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)处的切向量为
τ = ( ∣ F y ′ F z ′ G y ′ G z ′ ∣ P 0 , ∣ F z ′ F x ′ G z ′ G x ′ ∣ P 0 , ∣ F x ′ F y ′ G x ′ G y ′ ∣ P 0 ) . (4.19) \tau =(\left | \begin{array}{} F^{'}_y &F^{'}_z\\[2ex] G^{'}_y &G^{'}_z \end{array}\right|_{P_0}, \left | \begin{array}{} F^{'}_z &F^{'}_x\\[2ex] G^{'}_z &G^{'}_x \end{array}\right|_{P_0}, \left | \begin{array}{} F^{'}_x &F^{'}_y\\[2ex] G^{'}_x &G^{'}_y \end{array}\right|_{P_0}).\tag{4.19} τ=( FyGyFzGz P0, FzGzFxGx P0, FxGxFyGy P0).(4.19)②曲线 Γ \Gamma Γ在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)处的切线方程为 x − x 0 ∣ F y ′ F z ′ G y ′ G z ′ ∣ P 0 = y − y 0 ∣ F z ′ F x ′ G z ′ G x ′ ∣ P 0 = z − z 0 ∣ F x ′ F y ′ G x ′ G y ′ ∣ P 0 . (4.20) \frac{x-x_0}{\left |\begin{array}{} F^{'}_y &F^{'}_z\\[2ex] G^{'}_y &G^{'}_z \end{array}\right|_{P_0}}= \frac{y-y_0}{\left | \begin{array}{} F^{'}_z &F^{'}_x\\[2ex] G^{'}_z &G^{'}_x \end{array}\right|_{P_0}}= \frac{z-z_0}{\left | \begin{array}{} F^{'}_x &F^{'}_y\\[2ex] G^{'}_x &G^{'}_y \end{array}\right|_{P_0}}.\tag{4.20} FyGyFzGz P0xx0= FzGzFxGx P0yy0= FxGxFyGy P0zz0.(4.20)③曲线 Γ \Gamma Γ在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)处的法平面方程为 ∣ F y ′ F z ′ G y ′ G z ′ ∣ P 0 ( x − x 0 ) + ∣ F y ′ F z ′ G y ′ G z ′ ∣ P 0 ( y − y 0 ) + ∣ F x ′ F y ′ G x ′ G y ′ ∣ P 0 ( z − z 0 ) = 0 (4.21) \left |\begin{array}{} F^{'}_y &F^{'}_z\\[2ex] G^{'}_y &G^{'}_z \end{array}\right|_{P_0}(x-x_0)+ \left |\begin{array}{} F^{'}_y &F^{'}_z\\[2ex] G^{'}_y &G^{'}_z \end{array}\right|_{P_0}(y-y_0)+ \left | \begin{array}{} F^{'}_x &F^{'}_y\\[2ex] G^{'}_x &G^{'}_y \end{array}\right|_{P_0}(z-z_0)=0\tag{4.21} FyGyFzGz P0xx0+ FyGyFzGz P0yy0+ FxGxFyGy P0(zz0)=0(4.21)

(2)空间曲面的切平面与法线

(1)设空间曲面 Σ \Sigma Σ由方程 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0给出, P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0) Σ \Sigma Σ上的点,则

①曲面 Σ \Sigma Σ在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)处的法向量(垂直于该点切平面的向量)为
n = ( F x ′ ( x 0 , y 0 , z 0 ) , F y ′ ( x 0 , y 0 , z 0 ) , F z ′ ( x 0 , y 0 , z 0 ) ) , \bm n=(F^{'}_x(x_0,y_0,z_0),F^{'}_y(x_0,y_0,z_0),F^{'}_z(x_0,y_0,z_0)), n=(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0)),且法线方程为 x − x 0 F x ′ ( x 0 , y 0 , z 0 ) = y − y 0 F y ′ ( x 0 , y 0 , z 0 ) = z − z 0 F z ′ ( x 0 , y 0 , z 0 ) . \frac{x-x_0}{F^{'}_x(x_0,y_0,z_0)}=\frac{y-y_0}{F^{'}_y(x_0,y_0,z_0)}=\frac{z-z_0}{F^{'}_z(x_0,y_0,z_0)}. Fx(x0,y0,z0)xx0=Fy(x0,y0,z0)yy0=Fz(x0,y0,z0)zz0.

②曲面 Σ \Sigma Σ在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)处的切平面方程为 F x ′ ( x 0 , y 0 , z 0 ) ( x − x 0 ) + F y ′ ( x 0 , y 0 , z 0 ) ( y − y 0 ) + F z ′ ( x 0 , y 0 , z 0 ) ( z − z 0 ) = 0 F^{'}_x(x_0,y_0,z_0)(x-x_0)+F^{'}_y(x_0,y_0,z_0)(y-y_0)+F^{'}_z(x_0,y_0,z_0)(z-z_0)=0 Fx(x0,y0,z0)(xx0)+Fy(x0,y0,z0)(yy0)+Fz(x0,y0,z0)(zz0)=0

(2)设空间曲面 Σ \Sigma Σ由方程 z = f ( x , y ) z=f(x,y) z=f(x,y)给出,令 F ( x , y , z ) = f ( x , y ) − z F(x,y,z)=f(x,y)-z F(x,y,z)=f(x,y)z,则

①曲面 Σ \Sigma Σ在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)处的法向量为 n = ( f x ′ ( x 0 , y 0 ) , f y ′ ( x 0 , y 0 ) , − 1 ) , \bm n=(f^{'}_x(x_0,y_0),f^{'}_y(x_0,y_0),-1), n=(fx(x0,y0),fy(x0,y0),1),且法线方程为 x − x 0 f x ′ ( x 0 , y 0 ) = y − y 0 f y ′ ( x 0 , y 0 ) = z − z 0 − 1 \frac{x-x_0}{f^{'}_x(x_0,y_0)}=\frac{y-y_0}{f^{'}_y(x_0,y_0)}=\frac{z-z_0}{-1} fx(x0,y0)xx0=fy(x0,y0)yy0=1zz0

②曲线 Σ \Sigma Σ在点 P 0 ( x 0 , y 0 , y 0 ) P_0(x_0,y_0,y_0) P0(x0,y0,y0)处的平面方程为 f x ′ ( x 0 , y 0 ) ( x − x 0 ) + f y ′ ( x 0 , y 0 ) ( y − y 0 ) − ( z − z 0 ) = 0 f^{'}_x(x_0,y_0)(x-x_0)+f^{'}_y(x_0,y_0)(y-y_0)-(z-z_0)=0 fx(x0,y0)(xx0)+fy(x0,y0)(yy0)(zz0)=0【注】若用 α , β , γ \alpha ,\beta,\gamma α,β,γ表示曲面 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)处的法向量的方向角,并假定法向量的方向是向上的,即它与 z z z轴正向所成的角 γ \gamma γ是锐角,则法向量的方向余弦
cos ⁡ α = − f x 1 + f x 2 + f y 2 , cos ⁡ β = − f y 1 + f x 2 + f y 2 , cos ⁡ γ = − 1 1 + f x 2 + f y 2 . \cos \alpha=\frac{-f_x}{\sqrt{1+f^{2}_x+f^{2}_y}},\cos \beta=\frac{-f_y}{\sqrt{1+f^{2}_x+f^{2}_y}},\cos \gamma=\frac{-1}{\sqrt{1+f^{2}_x+f^{2}_y}}. cosα=1+fx2+fy2 fx,cosβ=1+fx2+fy2 fy,cosγ=1+fx2+fy2 1.


5.场论初步

(1)方向导数

偏导数反映函数沿着坐标轴方向的变化率,不够全面,需要研究函数沿任一指定方向的变化率,即方向导数。

定义1 设三元函数 u = u ( x , y , z ) u=u(x,y,z) u=u(x,y,z)在点 P 0 ( x 0 , y 0 , y 0 ) P_0(x_0,y_0,y_0) P0(x0,y0,y0)的某空间邻域 U ⊂ R 3 U\subset\bm R^3 UR3内有定义, l l l为从点 P 0 P_0 P0出发的射线, P ( x , y , z ) P(x,y,z) P(x,y,z) l l l上且在 U U U内的任一点,则 { x − x 0 = Δ x = t cos ⁡ α , y − y 0 = Δ y = t cos ⁡ β , z − z 0 = Δ z = t cos ⁡ γ . \begin{cases} x-x_0=\Delta x=t\cos \alpha,\\[2ex] y-y_0=\Delta y=t\cos \beta,\\[2ex] z-z_0=\Delta z=t\cos \gamma. \end{cases} xx0=Δx=tcosα,yy0=Δy=tcosβ,zz0=Δz=tcosγ. t = ( Δ x ) 2 + Δ y ) 2 + Δ z ) 2 t=\sqrt{(\Delta x)^2+\Delta y)^2+\Delta z)^2} t=(Δx)2+Δy)2+Δz)2 表示 P P P P 0 P_0 P0之间的距离,如图所示,若极限
lim ⁡ t → 0 + u ( P ) − u ( P 0 ) t = lim ⁡ t → 0 + u ( x 0 + t cos ⁡ α , y 0 + t cos ⁡ β , z 0 + t cos ⁡ γ ) − u ( x 0 , y 0 , z 0 ) t \lim_{t\to 0^+}\frac{u(P)-u(P_0)}{t}=\lim_{t\to 0^+}\frac{u(x_0+t\cos \alpha,y_0+t\cos \beta,z_0+t\cos \gamma)-u(x_0,y_0,z_0)}{t} t0+limtu(P)u(P0)=t0+limtu(x0+tcosα,y0+tcosβ,z0+tcosγ)u(x0,y0,z0)存在,则称此极限为函数 u = u ( x , y , z ) u=u(x,y,z) u=u(x,y,z)在点 P 0 P_0 P0沿方向 l l l方向导数,记作 ∂ u ∂ l ∣ P 0 . \left.\frac{\partial u}{\partial \bm l}\right|_{P_0}. lu P0.
请添加图片描述
定理(方向导数的计算公式) 设三元函数 u = u ( x , y , z ) u=u(x,y,z) u=u(x,y,z)在点 P 0 ( x 0 , y 0 , y 0 ) P_0(x_0,y_0,y_0) P0(x0,y0,y0)处可微分,则 u = ( x , y , z ) u=(x,y,z) u=(x,y,z)在点 P 0 P_0 P0处沿任一方向 l l l的方向导数都存在,且
∂ u ∂ l ∣ P 0 = u x ′ ( P 0 ) cos ⁡ α + u y ′ ( P 0 ) cos ⁡ β + u z ′ ( P 0 ) cos ⁡ γ (4.27) \left.\frac{\partial u}{\partial \bm l}\right|_{P_0}=u^{'}_x(P_0)\cos \alpha+u^{'}_y(P_0)\cos \beta+u^{'}_z(P_0)\cos \gamma\tag{4.27} lu P0=ux(P0)cosα+uy(P0)cosβ+uz(P0)cosγ(4.27)其中, cos ⁡ α , cos ⁡ β , cos ⁡ γ \cos \alpha,\cos \beta,\cos\gamma cosα,cosβ,cosγ l l l的方向余弦。

(2)梯度

定义2 设三元函数 u = u ( x , y , z ) u=u(x,y,z) u=u(x,y,z)在点 P 0 ( x 0 , y 0 , y 0 ) P_0(x_0,y_0,y_0) P0(x0,y0,y0)处有一阶偏导数,则定义 g r a d    u ∣ P 0 = ( u x ′ ( P 0 ) , u y ′ ( P 0 ) , u z ′ ( P 0 ) ) \left.\bm{grad} ~~\bm u\right|_{P_0}=(u^{'}_x(P_0),u^{'}_y(P_0),u^{'}_z(P_0)) grad  uP0=(ux(P0),uy(P0),uz(P0))为函数 u = u ( x , y , z ) u=u(x,y,z) u=u(x,y,z)在点 P 0 P_0 P0处的梯度。

(3)方向导数与梯度的关系

由方向导数的计算公式4.27与梯度定义可得 ∂ u ∂ l ∣ P 0 = ( u x ′ ( P 0 ) + u y ′ ( P 0 ) + u z ′ ( P 0 ) ) ⋅ ( cos ⁡ α , cos ⁡ β , cos ⁡ γ ) = g r a d    u ∣ P 0 ⋅ l 0 = ∣ g r a d    u ∣ P 0 ∣ ∣ l 0 ∣ cos ⁡ θ = ∣ g r a d    u ∣ P 0 ∣ cos ⁡ θ \begin{aligned} \left.\frac{\partial u}{\partial \bm l}\right|_{P_0} &=(u^{'}_x(P_0)+u^{'}_y(P_0)+u^{'}_z(P_0))\cdot(\cos \alpha,\cos \beta,\cos \gamma)\\[2ex] &=\left.\bm{grad} ~~u\right|_{P_0}\cdot \bm l^{0}\\[2ex] &=|\left.\bm{grad} ~~u\right|_{P_0}||\bm l^{0}|\cos\theta\\[2ex] &=|\left.\bm{grad} ~~u\right|_{P_0}|\cos\theta \end{aligned} lu P0=(ux(P0)+uy(P0)+uz(P0))(cosα,cosβ,cosγ)=grad  uP0l0=grad  uP0∣∣l0cosθ=grad  uP0cosθ其中 θ \theta θ g r a d    u ∣ P 0 与 l 0 \left.\bm{grad} ~~u\right|_{P_0} 与\bm l^{0} grad  uP0l0的夹角,当 cos ⁡ θ = 1 \cos \theta=1 cosθ=1时, ∂ u ∂ l ∣ P 0 \left.\frac{\partial u}{\partial \bm l}\right|_{P_0} lu P0有最大值。

结论 函数在某点的梯度是一个向量,它的方向与取得最大方向导数的方向一致,而它的模为方向导数的最大值。

(4)散度与旋度

设向量场 A ( x , y , z ) = ( P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) ) , \bm A(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z)), A(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z)), A ⃗ = P i ⃗ + Q j ⃗ + R k ⃗ \vec{A}=\bm P\vec{i}+\bm Q\vec{j}+\bm R\vec{k} A =Pi +Qj +Rk 散度 d i v A = ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z , div A=\frac{\partial \bm P}{\partial x}+\frac{\partial \bm Q}{\partial y}+\frac{\partial \bm R}{\partial z}, divA=xP+yQ+zR,旋度 r o t    A = i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R \bm{rot} ~~A=\begin{array}{c|ccc|} &\bm{i}&\bm{j}&\bm{k}\\[2ex] &\frac{\partial }{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\[2ex] &P&Q&R \end{array} rot  A=ixPjyQkzR


6.计算补充

零向量方向是不确定的,可以指任意方向。
点乘: a ⃗ ⋅ a ⃗ = ∣ a ⃗ ∣ 2 \vec{a}\cdot\vec{a}=|\vec{a}|^{2} a a =a 2
叉乘: a ⃗ × a ⃗ = 0 \vec{a}\times\vec{a}=0 a ×a =0
坐标轴 x , y , z x,y,z x,y,z轴对应的单位方向向量分别为 i ⃗ , j ⃗ , k ⃗ \vec{i},\vec{j},\vec{k} i ,j ,k ,其任意两两叉乘均为另外一个单位向量,方向由右手定则确定,详细结果如下:

i ⃗ \vec{i} i j ⃗ \vec{j} j k ⃗ \vec{k} k
i ⃗ \vec{i} i i ⃗ × i ⃗ = 0 ⃗ \vec{i}\times\vec{i}=\vec{0} i ×i =0 i ⃗ × j ⃗ = k ⃗ \vec{i}\times\vec{j}=\vec{k} i ×j =k i ⃗ × k ⃗ = − j ⃗ \vec{i}\times\vec{k}=-\vec{j} i ×k =j
j ⃗ \vec{j} j j ⃗ × i ⃗ = − k ⃗ \vec{j}\times\vec{i}=-\vec{k} j ×i =k j ⃗ × j ⃗ = 0 ⃗ \vec{j}\times\vec{j}=\vec{0} j ×j =0 j ⃗ × k ⃗ = i ⃗ \vec{j}\times\vec{k}=\vec{i} j ×k =i
k ⃗ \vec{k} k k ⃗ × i ⃗ = j ⃗ \vec{k}\times\vec{i}=\vec{j} k ×i =j k ⃗ × j ⃗ = − i ⃗ \vec{k}\times\vec{j}=-\vec{i} k ×j =i k ⃗ × k ⃗ = 0 ⃗ \vec{k}\times\vec{k}=\vec{0} k ×k =0

暂定这样,后续根据情况进行补充……

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 线性代数与空间解析几何PDF是一本涉及线性代数与空间解析几何知识的电子书。线性代数是数学中的一个重要分支,研究向量空间及其上的线性变换和线性方程组等问题。它的应用广泛,被用于物理学、经济学、计算机科学等领域。空间解析几何是数学中的一个分支,用于研究几何空间中的点、直线、平面等几何对象的性质和关系。它通过使用坐标系和代数方法,可以更方便地进行几何问题的分析和求解。 这本电子书综合了线性代数和空间解析几何的内容,从基础概念开始介绍,逐渐深入到更高级的内容。它包括了向量的定义、向量空间的性质、线性变换、矩阵和行列式、特征值和特征向量等线性代数的重要概念。同时,它也涵盖了三维空间中的点与向量、直线和平面的方程、空间中线性方程组的解等空间解析几何的内容。 这本PDF书籍可以作为线性代数和空间解析几何方面的入门教材,也可作为进一步学习和研究的参考资料。它提供了易于理解的解释和详细的例题,加强了读者对这些数学概念的理解和应用能力。此外,电子书的形式使得读者能够随时随地方便地进行学习和复习。 总之,线性代数与空间解析几何PDF是一本涵盖了线性代数和空间解析几何知识的电子书,对于学习者来说,它是一份非常有价值的学习资料。 ### 回答2: 线性代数与空间解析几何是一本关于数学学科的书籍,它涵盖了线性代数和空间解析几何的内容。线性代数是研究向量空间和线性变换的一门学科,它在许多领域都有广泛的应用,包括物理学、工程学、计算机科学等。线性代数的基本概念包括向量、矩阵、矩阵运算和矩阵方程等,通过对这些概念的理解和运用,可以解决许多实际问题。 空间解析几何是研究空间中点、直线、平面等几何对象的一门学科,它利用向量的方法研究几何问题。空间解析几何的基本概念包括点的坐标、向量的加法和数量积、直线和平面的方程等。通过这些概念的运用,可以描述和研究空间中的几何对象和它们之间的关系。 这本书将线性代数和空间解析几何的内容有机地结合在一起,旨在帮助读者理解并应用这两个学科的知识。它从基础概念开始介绍,包括向量的表示和运算、线性方程组的解法和矩阵的性质等。随后,它讲解了线性变换、特征值和特征向量等重要概念。最后,它介绍了空间解析几何的基本概念和相关定理。 这本书的特点之一是注重理论与实际应用的结合。它不仅提供了理论知识和推导过程,还给出了一些实际问题的解题思路和方法。此外,它配有大量的例题和习题,以帮助读者巩固所学内容。总之,线性代数与空间解析几何是一本系统、全面、实用的教材,适合数学、物理、工程等专业的学生学习和参考。 ### 回答3: 线性代数与空间解析几何是一本关于数学领域的教材或参考书籍,主要介绍线性代数和空间解析几何的基本概念、原理和应用。线性代数是数学中的一门重要学科,研究向量空间、线性变换、矩阵和行列式等内容。它在数学、物理、工程、计算机科学等领域中都有广泛的应用。 而空间解析几何则是用数学的方法来研究几何学问题,主要关注在三维空间中的点、直线、平面以及它们之间的关系和性质。空间解析几何主要使用向量的方法来进行求解,通过坐标系中的向量运算、方程和参数方程,来描述和解决几何问题。 这本书以简洁明了的方式讲解了线性代数和空间解析几何的基本理论,深入浅出地介绍了相关的数学概念和定理,并通过大量的示例和习题来帮助读者更好地理解和掌握知识。它既适合作为高等学校数学专业的教材,也适合作为自学的参考书。 对于学习线性代数和空间解析几何的读者来说,这本书是一本很好的选择。它将复杂的数学概念和方法进行了系统化的整理,让读者能够更好地理解和应用相关的知识。同时,这本书还提供了丰富的例题和习题,帮助读者锻炼和巩固所学的知识,提高解题能力。 总之,线性代数与空间解析几何是一本重要的数学教材,通过对线性代数和空间解析几何的详细讲解,帮助读者建立起坚实的数学基础,并为进一步学习更高级、更复杂的数学知识打下良好的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值