七、微分方程及其应用(高数)


七、微分方程及其应用

前言

在许多问题中,往往不能直接找出所需要的函数关系,但是根据问题所提供的情况,有时可以列出含有要找的函数及其导数的关系式。这样的关系式就是所谓微分方程。微分方程建立以后,对它进行研究,找出未知函数来,这就是解微分方程。
【拓展】微分方程的产生与计算机二级中的黑箱白箱理论有些类似,即无法直接得出函数关系方程,而只能得到对象的关系式,可通过联想加强微分方程印象。


1.微分方程相关概念

微分方程
  通常,凡表示未知函数、未知函数的导数与自变量之间关系的方程,叫做微分方程,有时也简称方程。
一般的n阶微分方程的形式是 F ( x , y , y ′ , ⋯   , y ( n ) ) = 0 或 y ( n ) = f ( x , y , y ′ , ⋯   , y ( n − 1 ) ) (7.1) F(x,y,y^{'},\cdots,y^{(n)})=0或y^{(n)}=f(x,y,y^{'},\cdots,y^{(n-1)}) \tag{7.1} F(x,y,y,,y(n))=0y(n)=f(x,y,y,,y(n1))(7.1)微分方程的阶
  方程中未知函数导数的最高阶导数的阶数,叫做微分方程的阶。
例如,方程 y ( 4 ) − 4 y ′ ′ ′ + 10 y ′ ′ − 12 y ′ + 5 y = sin ⁡ 2 x y^{(4)}-4y^{'''}+10y^{''}-12y^{'}+5y=\sin 2x y(4)4y′′′+10y′′12y+5y=sin2x中未知函数为y,其最高阶导数项为 y ( 4 ) y^{(4)} y(4),即阶数为4,即方程为四阶微分方程。

微分方程的解
  若将函数代入微分方程,使得方程成为恒等式,则称该函数为微分方程的解。设 y = y ( x ) y=y(x) y=y(x)在区间 I I I上连续且有直到 n n n阶的导数,使 F ( x , y ( x ) , y ′ ( x ) , ⋯   , y ( n ) ( x ) ) ≡ 0 F(x,y(x),y^{'}(x),\cdots ,y^{(n)}(x))\equiv 0 F(x,y(x),y(x),,y(n)(x))0,则称 y = y ( x ) y=y(x) y=y(x)为该微分方程在区间 I I I上的一个解。这个过程叫做解微分方程。

微分方程的通解
  若微分方程的解中含有任意常数,且任意常数的个数等于微分方程的阶数,这样的解称为微分方程的通解。
解释:有一个n阶微分方程 F ( x , y ( x ) , y ′ ( x ) , ⋯   , y ( n ) ( x ) ) ≡ 0 F(x,y(x),y^{'}(x),\cdots ,y^{(n)}(x))\equiv 0 F(x,y(x),y(x),,y(n)(x))0在区间上有一个 y = y ( x , C 1 , C 2 , ⋯   , C n ) y=y(x,C_1,C_2,\cdots,C_n) y=y(x,C1,C2,,Cn)的解, C 1 , C 2 , ⋯   , C n C_1,C_2,\cdots,C_n C1,C2,,Cn为n个任意常数,与n阶对应,则称它为该微分方程的通解。

常微分方程
  未知函数是一元函数的微分方程成为常微分方程,如 y ′ ′ ′ − y ′ ′ + 6 y = 0 , y d x − ( x + x 2 + y 2 ) d y = 0 y^{'''}-y^{''}+6y=0,ydx-(x+\sqrt{x^2+y^2})dy=0 y′′′y′′+6y=0,ydx(x+x2+y2 )dy=0

初始条件与特解
  确定通解中常数条件就是初始条件。如 y ( x 0 ) = a 0 , y ′ ( x 0 ) = a 1 , ⋯   , y ( n − 1 ) ( x 0 ) = a n − 1 , y(x_0)=a_0,y^{'}(x_0)=a_1,\cdots,y^{(n-1)}(x_0)=a_n-1, y(x0)=a0,y(x0)=a1,,y(n1)(x0)=an1,其中 a 0 , a 1 , ⋯   , a n − 1 a_0,a_1,\cdots,a_{n-1} a0,a1,,an1为n个给定的数,确定了通解中的常数后,解就成了特解

2.一阶微分方程 y ′ = f ( x , y ) y^{'}=f(x,y) y=f(x,y)

一般微分方程可写成如下的对称形式:
P ( x , y ) d x + Q ( x , y ) d y = 0 (7.2) P(x,y)\mathrm{d}x+Q(x,y)\mathrm{d}y=0\tag{7.2} P(x,y)dx+Q(x,y)dy=0(7.2)它可以看成是以x(或y)为自变量的方程。

可分离变量的微分方程
一般的,如果一个一阶微分方程能写成 g ( y ) d y = f ( x ) d x (7.3) g(y)\mathrm{d}y=f(x)\mathrm{d}x\tag{7.3} g(y)dy=f(x)dx(7.3)的形式,即微分方程一端只含有y的函数和dy,一端只含有x的函数和dx,那么原方程就称为可分离变量的微分方程。
解题思路
此类微分方程仅需对方程两边积分即可。

齐次方程
如果一阶微分方程可化为 d y d x = φ ( y x ) (7.4) \frac{\mathrm{d}y}{\mathrm{d}x}=\varphi(\frac{y}{x})\tag{7.4} dxdy=φ(xy)(7.4)的形式,那么就称这方程为齐次方程。
解题思路
在齐次方程中,引入 u = y x u=\frac{y}{x} u=xy,就可以把它化为可分离变量的方程,再积分即可。

一阶线性微分方程
方程 d y d x + P ( x ) y = Q ( x ) (7.5) \frac{\mathrm{d}y}{\mathrm{d}x}+P(x)y=Q(x)\tag{7.5} dxdy+P(x)y=Q(x)(7.5)叫做一阶线性微分方程。
其通解公式为 y = e − ∫ P ( x ) d x ( ∫ Q ( x ) e ∫ P ( x ) d x d x + C ) (7.6) y=e^{-\int P(x)\mathrm{d}x}(\int Q(x)e^{\int P(x)\mathrm{d}x}\mathrm{d}x+C)\tag{7.6} y=eP(x)dx(Q(x)eP(x)dxdx+C)(7.6)

伯努利方程
形如 d y d x + p ( x ) y = q ( x ) y n ( n ≠ 0 , 1 ) \frac{\mathrm{d}y}{\mathrm{d}x}+p(x)y=q(x)y^{n}(n\neq0,1) dxdy+p(x)y=q(x)yn(n=0,1)的方程,其中 p ( x ) , q ( x ) p(x),q(x) p(x),q(x)为已知的连续函数。解法步骤如下:
步骤一:先变形为 y − n ⋅ y ′ + p ( x ) y 1 − n = q ( x ) y^{-n}\cdot y^{'}+p(x)y^{1-n}=q(x) yny+p(x)y1n=q(x)
步骤二:令 z = y 1 − n z=y^{1-n} z=y1n,得 d z d x = ( 1 − n ) y − n d y d x \frac{\mathrm{d}z}{\mathrm{d}x}=(1-n)y^{-n}\frac{\mathrm{d}y}{\mathrm{d}x} dxdz=(1n)yndxdy,则 1 1 − n ⋅ d z d x + p ( x ) z = q ( x ) \frac{1}{1-n}\cdot\frac{\mathrm{d}z}{\mathrm{d}x}+p(x)z=q(x) 1n1dxdz+p(x)z=q(x)

3.可降阶的高阶微分方程

(1) y ′ ′ = f ( x , y ′ ) y^{''}=f(x,y^{'}) y′′=f(x,y)型(方程中不显含未知函数y)

  步骤一:令 y ′ = p ( x ) , y ′ ′ = p ′ y^{'}=p(x),y^{''}=p^{'} y=p(x),y′′=p,则原方程变为一阶方程 d p d x = f ( x , p ) \frac{\mathrm{d}p}{\mathrm{d}x}=f(x,p) dxdp=f(x,p)

  步骤二:若求得其解为 p ( x ) = φ ( x , C 1 ) p(x)=\varphi(x,C_1) p(x)=φ(x,C1),即 y ′ = φ ( x , C 1 ) y^{'}=\varphi(x,C_1) y=φ(x,C1),则原方程的通解为 y = ∫ φ ( x , C 1 ) d x + C 2 y=\int\varphi(x,C_1)\mathrm{d}x+C_2 y=φ(x,C1)dx+C2
以下列题目为例
在这里插入图片描述

(2) y ′ ′ = f ( y , y ′ ) y^{''}=f(y,y^{'}) y′′=f(y,y)型(方程中不显含自变量x)

  步骤一:令 y ′ = p , y ′ ′ = d p d x = d p d y ⋅ d y d x = d p d y ⋅ y^{'}=p,y^{''}=\frac{\mathrm{d}p}{\mathrm{d}x}=\frac{\mathrm{d}p}{\mathrm{d}y}\cdot\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\mathrm{d}p}{\mathrm{d}y}\cdotp y=p,y′′=dxdp=dydpdxdy=dydp,则原方程变为一阶方程 p d p d y = f ( y , p ) p\frac{\mathrm{d}p}{\mathrm{d}y}=f(y,p) pdydp=f(y,p)
  步骤二:若求得其解为 p ( x ) = φ ( y , C 1 ) p(x)=\varphi(y,C_1) p(x)=φ(y,C1),则由 p = d y d x p=\frac{\mathrm{d}y}{\mathrm{d}x} p=dxdy可得 d y d x = φ ( x , C 1 ) \frac{\mathrm{d}y}{\mathrm{d}x}=\varphi(x,C_1) dxdy=φ(x,C1),分离变量得 d y φ ( y , C 1 ) = d x \frac{\mathrm{d}y}{\varphi(y,C_1)}=dx φ(y,C1)dy=dx
  步骤三:两边积分得 ∫ d y φ ( y , C 1 ) = x + C 2 \int\frac{\mathrm{d}y}{\varphi(y,C_1)}=x+C_2 φ(y,C1)dy=x+C2,即可求得原方程的通解。
以下列题目为例
请添加图片描述

4.高阶微分方程

研究高阶微分方程,讨论时以二阶线性微分方程为主

(1)函数组的线性关系

  设 y 1 ( x ) , y 2 ( x ) , ⋯   , y n ( x ) y_1(x),y_2(x),\cdots ,y_n(x) y1(x),y2(x),,yn(x)为定义在区间 I I I上的 n n n个函数,如果存在 n n n个不全为零的常数 k 1 , k 2 , ⋯   , k n k_1,k_2,\cdots,k_n k1,k2,,kn,使得 x ∈ I x\in I xI时有恒等式 k 1 y 1 + k 2 y 2 + ⋯ + k n y n ≡ 0 k_1y_1+k_2y_2+\cdots +k_ny_n\equiv0 k1y1+k2y2++knyn0成立,那么称这n个函数在区间 I I I上线性相关;否则线性无关。

两个函数在区间 I I I上线性相关(或线性无关)的充要条件

y 1 ( x ) , y 2 ( x ) y_1(x),y_2(x) y1(x),y2(x)线性相关 ⇌ \rightleftharpoons 存在不全为0的 k 1 , k 2 k_1,k_2 k1,k2使 k 1 y 1 ( x ) + k 2 y 2 ( x ) ≡ 0 ⇌ y 1 ( x ) y 2 ( x ) ≡ − k 2 k 1 \displaystyle k_1y_1(x)+k_2y_2(x)\equiv0\rightleftharpoons\frac{y_1(x)}{y_2(x)}\equiv -\frac{k_2}{k_1} k1y1(x)+k2y2(x)0y2(x)y1(x)k1k2(这里假设 k 1 ≠ 0 k_1\neq0 k1=0

y 1 ( x ) , y 2 ( x ) y_1(x),y_2(x) y1(x),y2(x)线性无关 ⇌ y 1 ( x ) y 2 ( x ) ≢ \rightleftharpoons \frac{y_1(x)}{y_2(x)}\not\equiv y2(x)y1(x)常数

若可微函数 y 1 ( x ) , y 2 ( x ) y_1(x),y_2(x) y1(x),y2(x)线性无关 ⇌ y 1 ( x ) y 2 ( x ) y 1 ′ ( x ) y 2 ′ ( x ) ≠ 0 \rightleftharpoons \begin{array}{|cc|} y_1(x)&y_2(x)\\[2ex] y^{'}_1(x)&y^{'}_2(x) \end{array}\neq0 y1(x)y1(x)y2(x)y2(x)=0

(2)二阶微分方程分类

方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = f ( x ) (7.7) y^{''}+P(x)y^{'}+Q(x)y=f(x)\tag{7.7} y′′+P(x)y+Q(x)y=f(x)(7.7)二阶变系数非齐次线性微分方程,其中 P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x)是在系数位置的函数, f ( x ) f(x) f(x)叫自由项,均为已知的连续函数。

  常系数:当位于系数位置的函数 P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x)改为常数 p , q p,q p,q,方程7.7则为常系数线性微分方程。
  齐次:当 f ( x ) f(x) f(x)不恒等于零时,方程7.7则为非齐次方程,反之,为齐次方程。
  线性:有关线性与非线性的介绍可查看此链接(非)线性代数方程、(非)线性微分方程 含义
归纳以上内容,常系数齐次线性微分方程 y ′ ′ + p y ′ + q y = 0 . (7.8) \bm{y^{''}+py^{'}+qy=0}.\tag{7.8} y′′+py+qy=0.(7.8)

(3)线性微分方程解的结构

以二阶变系数齐次线性方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 \bm{y^{''}+P(x)y^{'}+Q(x)y=0} y′′+P(x)y+Q(x)y=0进行讨论(以下简称方程):

定理一,如果 y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x)是方程的两个解,那么 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) (7.9) y=C_1y_1(x)+C_2y_2(x)\tag{7.9} y=C1y1(x)+C2y2(x)(7.9)也是方程的,其中 C 1 , C 2 C_1,C_2 C1,C2是任意常数。

定理二,若 y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x)是方程的两个线性无关的特解,那么 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) (7.10) y=C_1y_1(x)+C_2y_2(x)\tag{7.10} y=C1y1(x)+C2y2(x)(7.10)就是方程的通解

推论  如果 y 1 ( x ) , y 2 ( x ) , ⋯   , y n ( x ) y_1(x),y_2(x),\cdots ,y_n(x) y1(x),y2(x),,yn(x) n n n阶齐次线性方程 y ( n ) + a 1 ( x ) y ( n − 1 ) + ⋯ + a n − 1 ( x ) y ′ + a n ( x ) y = 0 y^{(n)}+a_1(x)y^{(n-1)}+\cdots+a_{n-1}(x)y^{'}+a_n(x)y=0 y(n)+a1(x)y(n1)++an1(x)y+an(x)y=0的n个线性无关的解,那么,此方程的通解为 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) + ⋯ + C n y n ( x ) , y=C_1y_1(x)+C_2y_2(x)+\cdots+C_ny_n(x), y=C1y1(x)+C2y2(x)++Cnyn(x),其中, C 1 , C 2 , ⋯   , C n C_1,C_2,\cdots,C_n C1,C2,,Cn为任意常数。

定理三,设 y ∗ ( x ) y^{*}(x) y(x)是二阶非齐次线性方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = f ( x ) (7.11) y^{''}+P(x)y^{'}+Q(x)y=f(x)\tag{7.11} y′′+P(x)y+Q(x)y=f(x)(7.11)的一个特解,方程7.11所对应的齐次方程刚好是我们所讨论的方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 y^{''}+P(x)y^{'}+Q(x)y=0 y′′+P(x)y+Q(x)y=0,同时 Y ( x ) Y(x) Y(x)是齐次方程的通解,因此, y = Y ( x ) + y ∗ ( x ) y=Y(x)+y^{*}(x) y=Y(x)+y(x)是方程7.11的通解。
在这里插入图片描述
定理四,设非齐次线性方程为 y ′ ′ + P ( x ) y ′ + Q ( x ) y = f 1 ( x ) + f 2 ( x ) y^{\prime\prime}+P(x)y^{\prime}+Q(x)y=f_1(x)+f_2(x) y′′+P(x)y+Q(x)y=f1(x)+f2(x)其等式右侧为两个函数之和,而 y 1 ∗ ( x ) y_1^{*}(x) y1(x) y 2 ∗ ( x ) y_2^{*}(x) y2(x)分别是方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = f 1 ( x ) y^{\prime\prime}+P(x)y^{\prime}+Q(x)y=f_1(x) y′′+P(x)y+Q(x)y=f1(x) y ′ ′ + P ( x ) y ′ + Q ( x ) y = f 2 ( x ) y^{\prime\prime}+P(x)y^{\prime}+Q(x)y=f_2(x) y′′+P(x)y+Q(x)y=f2(x)的特解,那么 y = y 1 ∗ ( x ) + y 2 ∗ ( x ) y=y_1^{*}(x)+y_2^{*}(x) y=y1(x)+y2(x)就是原方程的特解。

(4)特征方程

特征方程是为研究相应的数学对象而引入的等式,此篇文章主要讲述微分方程的特征方程。
引子
一个特点:当 r r r为常数时,指数函数 y = e r x y=e^{rx} y=erx和它的各阶导数都只差一个常数因子。

y = e r x y=e^{rx} y=erx求导,得 y ′ = r e r x , y ′ ′ = r 2 e r x y^{\prime}=re^{rx}, \quad y^{\prime\prime}=r^2e^{rx} y=rerx,y′′=r2erx

代入微分方程7.8 ( y ′ ′ + p y ′ + q y = 0 ) (y^{\prime\prime}+py^{\prime}+qy=0) (y′′+py+qy=0)中,得到 ( r 2 + p r + q ) e r x = 0 (r^2+pr+q)e^{rx}=0 (r2+pr+q)erx=0消除多余项 ( e r x ≠ 0 ) (e^{rx}\neq 0) (erx=0),得到方程 r 2 + p r + q = 0 (7.12) r^2+pr+q=0\tag{7.12} r2+pr+q=0(7.12)该方程即是对应微分方程7.8的特征方程。

5.齐次线性方程通解求解

(1)二阶常系数齐次线性方程求解步骤

y ′ ′ + p y ′ + q y = 0 y^{\prime\prime}+py^{\prime}+qy=0 y′′+py+qy=0步骤一 写出微分方程的特征方程 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0步骤二 求出特征方程的两个根 r 1 , r 2 . r_1,r_2. r1,r2.

步骤三 根据两个根的不同情况,写出微分方程通解:

特征方程 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0的两个根 r 1 , r 2 r_1,r_2 r1,r2微分方程 y ′ + p y ′ + q y = 0 y^{\prime}+py^{\prime}+qy=0 y+py+qy=0的通解
两个不相等的实根 r 1 , r 2 r_1,r_2 r1,r2
两个相同的实根 r 1 = r 2 r_1=r_2 r1=r2
一对共轭复根 r 1 , 2 = α ± i β r_{1,2}=\alpha \pm i\beta r1,2=α±iβ
y = C 1 e r 1 x + C 2 e r 2 x y=C_1e^{r_1x}+C_2e^{r_2x} y=C1er1x+C2er2x
y = ( C 1 + C 2 ) e r 1 x y=(C_1+C_2)e^{r_1x} y=(C1+C2)er1x
y = e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x y=e^{\alpha x}(C_1\cos \beta x+C_2\sin \beta x y=eαx(C1cosβx+C2sinβx

(2)n阶常系数齐次线性方程求解步骤

一般形式
y ( n ) + p 1 y ( n − 1 ) + p 2 y ( n − 2 ) + ⋯ + + p n − 1 y ′ + p n y = 0 (7.13) y^{(n)}+p_1y^{(n-1)}+p_2y^{(n-2)}+\cdots++p_{n-1}y^{\prime}+p_ny=0\tag{7.13} y(n)+p1y(n1)+p2y(n2)+++pn1y+pny=0(7.13)其中, p 1 , p 2 , ⋯   , p n − 1 , p n p_1,p_2,\cdots,p_{n-1},p_n p1,p2,,pn1,pn都是常数。
用记号 D \bm{D} D(叫做微分算子)表示对 x x x求导的运算 d d x \displaystyle\frac{\mathrm{d}}{\mathrm{d}x} dxd,把 d y d x \displaystyle\frac{\mathrm{d}y}{\mathrm{d}x} dxdy记作 D y Dy Dy,把 d n y d x n \displaystyle\frac{\mathrm{d}^ny}{\mathrm{d}x^n} dxndny记作 D n y D^ny Dny,一般形式可改写成如下形式:
( D n + p 1 D n − 1 + ⋯ + p n − 1 D + p n ) y = 0 (D^n+p_1D^{n-1}+\cdots+p_{n-1}D+p_{n})y=0 (Dn+p1Dn1++pn1D+pn)y=0
记作 L ( D ) = D n + p 1 D n − 1 + ⋯ + p n − 1 D + p n L(D)=D^n+p_1D^{n-1}+\cdots+p_{n-1}D+p_{n} L(D)=Dn+p1Dn1++pn1D+pn

解题步骤
步骤一 写出微分方程的特征方程 r n + p 1 r ( n − 1 ) + p 2 r ( n − 2 ) + ⋯ + + p n − 1 r ′ + p n = 0 r^n+p_1r^{(n-1)}+p_2r^{(n-2)}+\cdots++p_{n-1}r^{\prime}+p_n=0 rn+p1r(n1)+p2r(n2)+++pn1r+pn=0

步骤二 根据特征方程根的不同情况,写出微分方程通解:

特征方程的根微分方程通解中的对应项
单实根 r r r
一对单复根 r 1 , 2 = α ± i β r_{1,2}=\alpha \pm i\beta r12=α±iβ

k k k重实根 r r r
一对 k k k重复根 r 1 , 2 = α ± i β r_{1,2}=\alpha \pm i\beta r1,2=α±iβ
给出一项: C e r x Ce^{rx} Cerx
给出两项: e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) e^{\alpha x}(C_1\cos \beta x+C_2\sin \beta x) eαx(C1cosβx+C2sinβx)

给出 k k k项: e r x ( C 1 + C 2 x + ⋯ + C k x k − 1 ) e^{rx}(C_1+C_2x+\cdots+C_kx^{k-1}) erx(C1+C2x++Ckxk1)
给出2 k k k项: e α x [ ( C 1 + C 2 x + ⋯ + C k x k − 1 ) cos ⁡ β x + ( D 1 + D 2 x + ⋯ + D k x k − 1 ) sin ⁡ β x ] e^{\alpha x}[(C_1+C_2x+\cdots+C_kx^{k-1})\cos \beta x+(D_1+D_2x+\cdots+D_kx^{k-1})\sin \beta x] eαx[(C1+C2x++Ckxk1)cosβx+(D1+D2x++Dkxk1)sinβx]

n阶常系数齐次线性方程的通解为 y = C 1 y 1 + C 2 y 2 + ⋯ + C n y n y=C_1y_1+C_2y_2+\cdots+C_ny_n y=C1y1+C2y2++Cnyn

6.非齐次线性方程特解求解

回顾之前的非齐次线性方程 y ′ ′ + p y ′ + q y = f ( x ) y^{\prime\prime}+py^{\prime}+qy=f(x) y′′+py+qy=f(x),结合定理三,知该非齐次线性方程通解为对应的齐次线性方程的通解和它本身的一个特解。上一节已整理了齐次方程通解的求解方法,本节对非齐次线性方程特解进行求解。

(1) f ( x ) = e λ x P m ( x ) f(x)=e^{\lambda x}P_m(x) f(x)=eλxPm(x)

介绍
   f ( x ) = P m ( x ) e λ x f(x)=P_m(x)e^{\lambda x} f(x)=Pm(x)eλx, λ \lambda λ是常数, P m ( x ) P_m(x) Pm(x) x x x的一个m次多项式, P m ( x ) = a 0 x m + a 1 x m − 1 + ⋯ + a m − 1 x + a m P_m(x)=a_0x^{m}+a_1x^{m-1}+\cdots+a_{m-1}x+a_m Pm(x)=a0xm+a1xm1++am1x+am

结论
  若 f ( x ) = P m ( x ) e λ x f(x)=P_m(x)e^{\lambda x} f(x)=Pm(x)eλx,则二阶常系数非齐次线性微分方程具有形如 y ∗ = x k Q m ( x ) e λ x y^{*}=x^{k}Q_m(x)e^{\lambda x} y=xkQm(x)eλx的特解,其中 Q m ( x ) Q_m(x) Qm(x)是与 P m ( x ) P_m(x) Pm(x)通次的多项式, Q m ( x ) = b 0 x m + b 1 x m − 1 + ⋯ + b m − 1 x + b m Q_m(x)=b_0x^{m}+b_1x^{m-1}+\cdots+b_{m-1}x+b_m Qm(x)=b0xm+b1xm1++bm1x+bm k k k根据 λ \lambda λ与特征方程根的关系(不是特征 方程根、是特征方程根以及是特征方程重根3种情况,依次取为0、1、2)

(2) f ( x ) = e λ x [ P l ( 1 ) cos ⁡ ω x + P n ( 2 ) sin ⁡ ω x ] f(x)=e^{\lambda x}[P^{(1)}_l\cos \omega x+P^{(2)}_n\sin \omega x] f(x)=eλx[Pl(1)cosωx+Pn(2)sinωx]

介绍
   f ( x ) = e λ x [ P l ( 1 ) ( x ) cos ⁡ ω x + P n ( 2 ) ( x ) sin ⁡ ω x ] f(x)=e^{\lambda x}[P^{(1)}_l(x)\cos \omega x+P^{(2)}_n(x)\sin \omega x] f(x)=eλx[Pl(1)(x)cosωx+Pn(2)(x)sinωx],其中 λ 、 ω \lambda 、\omega λω是常数, P l ( x ) 、 P n ( x ) P_l(x)、P_n(x) Pl(x)Pn(x)分别是x的 l l l次、 n n n次多项式,且有一个可为零。

结论
  若 f ( x ) = e λ x [ P l ( 1 ) ( x ) cos ⁡ ω x + P n ( 2 ) ( x ) sin ⁡ ω x ] f(x)=e^{\lambda x}[P^{(1)}_l(x)\cos \omega x+P^{(2)}_n(x)\sin \omega x] f(x)=eλx[Pl(1)(x)cosωx+Pn(2)(x)sinωx],则二阶常系数非齐次线性微分方程特解可设为 y ∗ = x k e λ x [ R m ( 1 ) ( x ) cos ⁡ ω x + R m ( 2 ) ( x ) sin ⁡ ω x ] y^{*}=x^ke^{\lambda x}[R^{(1)}_m(x)\cos\omega x+R^{(2)}_m(x)\sin\omega x] y=xkeλx[Rm(1)(x)cosωx+Rm(2)(x)sinωx],其中 R m ( 1 ) ( x ) 、 R m ( 2 ) ( x ) R^{(1)}_m(x)、R^{(2)}_m(x) Rm(1)(x)Rm(2)(x)是m次多项式, m = m a x { l , n } m=max\{l,n\} m=max{l,n},而 k k k λ + i ω \lambda+i\omega λ+(或 λ − i ω \lambda-i\omega λ)不是特征方程的根、或是特征方程的单根依次取0或1。

7.欧拉方程与欧拉公式

欧拉方程
  形如 x n y n + p 1 x n − 1 y n − 1 + ⋯ + p n − 1 x y ′ + p n y = f ( x ) \displaystyle x^{n}y^{n}+p_1 x^{n-1}y^{n-1}+\cdots+p_{n-1} xy^{\prime}+p_{n}y=f(x) xnyn+p1xn1yn1++pn1xy+pny=f(x)的方程(其中 p 1 , p 2 , ⋯   , p n p_1,p_2,\cdots,p_n p1,p2,,pn为常数),叫做欧拉方程,它是一种特殊的微分方程。

欧拉公式
在这里插入图片描述


总结

简单对微分方程知识做了一下总结,后半部分6、7进行了一定省略。

其他章节内容
四、空间解析几何

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值