八、无穷级数(高数)
- 八、无穷级数(高数)
- 0、前言
- 1、常数项级数
- (1)级数概念
- (2)级数性质
- (3)常用级数
- 2、级数审敛性的判别方法
- (1)正项级数及其审敛法
- (2)交错级数及其审敛法
- (3)任意项级数
- 3、幂级数及其收敛域
- (1)概念
八、无穷级数(高数)
0、前言
级数类型 | 级数形式 | 备注 |
---|---|---|
常数项级数 | ∑ n = 1 ∞ u n ( u n > 0 ) \displaystyle \sum_{n=1}^\infty u_n(u_n\gt0) n=1∑∞un(un>0) | 正项级数
∑
n
=
1
∞
u
n
\quad\displaystyle \sum_{n=1}^\infty u_n\qquad\qquad\qquad\qquad
n=1∑∞un 交错级数 ∑ n = 1 ∞ ( − 1 ) n u n \quad\displaystyle\sum_{n=1}^{\infty}(-1)^nu_n n=1∑∞(−1)nun或 ∑ n = 1 ∞ ( − 1 ) n − 1 u n \displaystyle\sum_{n=1}^{\infty}(-1)^{n-1}u_n n=1∑∞(−1)n−1un |
函数项级数 | ∑ n = 1 ∞ u n ( x ) \displaystyle \sum_{n=1}^\infty u_n(x) n=1∑∞un(x) | 3 |
幂项级数 | ∑ n = 1 ∞ u n \displaystyle \sum_{n=1}^\infty u_n n=1∑∞un | 3 |
1、常数项级数
(1)级数概念
定义 一般的,如果给定一个数列 u 1 , u 2 , u 3 , ⋯ , u n , ⋯ , u_1,u_2,u_3,\cdots,u_n,\cdots, u1,u2,u3,⋯,un,⋯,则由这数列构成的表达式 u 1 + u 2 + u 3 + ⋯ + u n + ⋯ (8.1) u_1+u_2+u_3+\cdots+u_n+\cdots\tag{8.1} u1+u2+u3+⋯+un+⋯(8.1)叫做(常数项)无穷级数,简称(常数项)级数,记作 ∑ n = 1 ∞ u n \displaystyle \sum_{n=1}^\infty u_n n=1∑∞un,即 ∑ n = 1 ∞ u n = u 1 + u 2 + u 3 + ⋯ + u n + ⋯ , \sum_{n=1}^\infty u_n=u_1+u_2+u_3+\cdots+u_n+\cdots, n=1∑∞un=u1+u2+u3+⋯+un+⋯,其中,第 n n n项 u n u_n un叫做级数的一般项。
部分和 作级数(8.1)的前n项的和,得 s n = u 1 + u 2 + u 3 + ⋯ + u n = ∑ i = 1 n u i s_n=u_1+u_2+u_3+\cdots+u_n=\sum_{i=1}^{n}u_i sn=u1+u2+u3+⋯+un=i=1∑nui其中, s n \displaystyle s_n sn被称为级数的部分和。
收敛&发散 当n依次取 1 , 2 , 3 , ⋯ 1,2,3,\cdots 1,2,3,⋯时,构成级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1∑∞un的部分和数列: s 1 = u 1 , s 2 = u 1 + u 2 , s 3 = u 1 + u 2 + u 3 , ⋯ s n = u 1 + u 2 + ⋯ + u n , ⋯ \begin{aligned} &s_1=u_1,\\ &s_2=u_1+u_2,\\ &s_3=u_1+u_2+u_3,\\ &\cdots\\ &s_n=u_1+u_2+\cdots+u_n,\\ &\cdots\end{aligned} s1=u1,s2=u1+u2,s3=u1+u2+u3,⋯sn=u1+u2+⋯+un,⋯如果级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1∑∞un的部分和数列 { s n } \{s_n\} {sn}有极限,即 lim n → ∞ s n = s , \displaystyle\lim_{n\to\infty}s_n=s, n→∞limsn=s,则称无穷级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1∑∞un收敛,这时极限 s s s叫做这个级数的和,并写成 s = u 1 + u 2 + ⋯ + u n + ⋯ s=u_1+u_2+\cdots+u_n+\cdots s=u1+u2+⋯+un+⋯;如果 { s n } \{s_n\} {sn}没有极限,则称无穷级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1∑∞un发散。
级数余项 当级数收敛时,级数的/部分和数列/存在极限s,极限s与部分和 s n s_n sn的差值 r n = s − s n = u n + 1 + u n + 2 + ⋯ r_n=s-s_n=u_{n+1}+u_{n+2}+\cdots rn=s−sn=un+1+un+2+⋯就叫做这个级数的余项,极限s与部分和 s n s_n sn的误差即 ∣ r n ∣ |r_n| ∣rn∣。
(2)级数性质
1)若常数 k ≠ 0 k\neq0 k=0,则 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1∑∞un与 ∑ n = 1 ∞ k u n \displaystyle\sum_{n=1}^{\infty}ku_n n=1∑∞kun有相同的敛散性,且若 ∑ n = 1 ∞ u n = S \displaystyle\sum_{n=1}^{\infty}u_n=S n=1∑∞un=S,则 ∑ n = 1 ∞ k u n = k S . \displaystyle\sum_{n=1}^{\infty}ku_n=kS. n=1∑∞kun=kS.
2)设
∑
n
=
1
∞
u
n
=
S
1
,
∑
n
=
1
∞
v
n
=
S
2
\displaystyle\sum_{n=1}^{\infty}u_n=S_1,\sum_{n=1}^{\infty}v_n=S_2
n=1∑∞un=S1,n=1∑∞vn=S2,则
∑
n
=
1
∞
(
u
n
±
v
n
)
=
∑
n
=
1
∞
u
n
±
∑
n
=
1
∞
v
n
=
S
1
±
S
2
\displaystyle\sum_{n=1}^{\infty}(u_n\pm v_n)=\sum_{n=1}^{\infty}u_n\pm\sum_{n=1}^{\infty}v_n=S_1\pm S_2
n=1∑∞(un±vn)=n=1∑∞un±n=1∑∞vn=S1±S2
补充说明:①若
∑
n
=
1
∞
u
n
\displaystyle\sum_{n=1}^{\infty}u_n
n=1∑∞un收敛,
∑
n
=
1
∞
v
n
\displaystyle\sum_{n=1}^{\infty}v_n
n=1∑∞vn发散,则
∑
n
=
1
∞
(
u
n
±
v
n
)
\displaystyle\sum_{n=1}^{\infty}(u_n\pm v_n)
n=1∑∞(un±vn)发散。
②若
∑
n
=
1
∞
u
n
\displaystyle\sum_{n=1}^{\infty}u_n
n=1∑∞un发散,
∑
n
=
1
∞
v
n
\displaystyle\sum_{n=1}^{\infty}v_n
n=1∑∞vn发散,
∑
n
=
1
∞
(
u
n
±
v
n
)
\displaystyle\sum_{n=1}^{\infty}(u_n\pm v_n)
n=1∑∞(un±vn)不一定发散。
3)在级数中去掉、加上、或改变有限项,不会改变级数的敛散性。
4)若级数
∑
n
=
1
∞
u
n
\displaystyle\sum_{n=1}^{\infty}u_n
n=1∑∞un收敛,则对级数的项任意加括号后所构成的级数仍收敛。
补充说明:①加括号后的级数收敛,原级数不一定收敛。(
∑
n
=
1
∞
(
−
1
)
n
\displaystyle\sum_{n=1}^{\infty}(-1)^n
n=1∑∞(−1)n发散)
②任意加括号时,不能改变原级数的项的顺序。
5)级数收敛的必要条件:若
∑
n
=
1
∞
u
n
\displaystyle\sum_{n=1}^{\infty}u_n
n=1∑∞un收敛,则
lim
n
→
∞
u
n
=
0
\displaystyle\lim_{n\to\infty} u_n=0
n→∞limun=0
补充说明:①级数一般项极限为0,无法推出级数收敛。(调和级数
∑
n
=
1
∞
1
n
\displaystyle\sum_{n=1}^{\infty}\frac{1}{n}
n=1∑∞n1发散)
②该项常用来判别级数发散。(若
lim
n
→
∞
u
n
≠
0
,
\displaystyle\lim_{n\to\infty}u_{n}\ne0,
n→∞limun=0,则
∑
n
=
1
∞
u
n
\displaystyle\sum_{n=1}^{\infty}u_n
n=1∑∞un发散)
(3)常用级数
等比级数(几何级数)
∑
n
=
0
∞
a
q
n
=
a
+
a
q
+
a
q
2
+
⋯
+
a
q
n
+
⋯
\displaystyle\sum_{n=0}^{\infty}aq^{n}=a+aq+aq^2+\cdots+aq^n+\cdots
n=0∑∞aqn=a+aq+aq2+⋯+aqn+⋯
其部分和为:
S
n
=
a
+
a
q
+
a
q
2
+
⋯
+
a
q
n
−
1
=
{
a
(
1
−
q
n
)
1
−
q
,
q
≠
1
n
a
,
q
=
1
S_n=a+aq+aq^2+\cdots+aq^{n-1}= \begin{cases} \frac{a(1-q^n)}{1-q},&q\ne1\\ na,&q=1 \end{cases}
Sn=a+aq+aq2+⋯+aqn−1={1−qa(1−qn),na,q=1q=1
说明:
①当
∣
q
∣
<
1
|q|\lt1
∣q∣<1时,
lim
n
→
∞
S
n
=
a
1
−
q
\displaystyle\lim_{n\to\infty}S_n=\frac{a}{1-q}
n→∞limSn=1−qa,等比级数收敛;
②当
∣
q
∣
>
1
|q|\gt1
∣q∣>1时,
lim
n
→
∞
S
n
=
∞
\displaystyle\lim_{n\to\infty}S_n=\infty
n→∞limSn=∞,等比级数发敛;
③当
q
=
1
q=1
q=1时,
lim
n
→
∞
S
n
=
lim
n
→
∞
n
a
=
∞
\displaystyle\lim_{n\to\infty}S_n=\lim_{n\to\infty}na=\infty
n→∞limSn=n→∞limna=∞,等比级数发散;
④当
q
=
−
1
q=-1
q=−1时,
lim
n
→
∞
S
n
\displaystyle\lim_{n\to\infty}S_n
n→∞limSn不存在,等比级数发散;
P级数
∑
n
=
0
∞
1
n
q
{
收
敛
,
p
>
1
,
发
散
,
0
<
p
≤
1.
\displaystyle\sum_{n=0}^{\infty}\frac{1}{n^{q}} \begin{cases} 收敛,p\gt1,\\ 发散,0\lt p\le1. \end{cases}
n=0∑∞nq1{收敛,p>1,发散,0<p≤1.
举例:
∑
n
=
1
∞
1
n
调
和
级
数
,
发
散
\displaystyle\sum_{n=1}^{\infty}\frac{1}{n}调和级数,发散
n=1∑∞n1调和级数,发散;
∑
n
=
1
∞
−
1
n
交
错
级
数
,
条
件
收
敛
\displaystyle\sum_{n=1}^{\infty}-\frac{1}{n}交错级数,条件收敛
n=1∑∞−n1交错级数,条件收敛。
2、级数审敛性的判别方法
(1)正项级数及其审敛法
设 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1∑∞un,若通项 u n ≥ 0 u_n\ge0 un≥0,则称该级数为正项级数。判断正项级数审敛性有以下五种方法:
1)充要条件: ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1∑∞un收敛 ⟺ \Longleftrightarrow ⟺部分和 { S n } \{S_n\} {Sn}有界。
2)比较法
若
u
n
≤
k
v
n
(
k
>
0
)
u_n\le kv_n(k\gt0)
un≤kvn(k>0),若
∑
n
=
1
∞
v
n
\displaystyle\sum_{n=1}^{\infty}v_n
n=1∑∞vn收敛,则
∑
n
=
1
∞
u
n
\displaystyle\sum_{n=1}^{\infty}u_n
n=1∑∞un收敛;若
∑
n
=
1
∞
u
n
\displaystyle\sum_{n=1}^{\infty}u_n
n=1∑∞un发散,则
∑
n
=
1
∞
v
n
\displaystyle\sum_{n=1}^{\infty}v_n
n=1∑∞vn发散。
大的收敛,小的收敛,小的发散,大的发散。
3)比较法的极限形式
lim
n
→
∞
u
n
v
n
=
l
,
{
0
<
l
<
+
∞
时
,
∑
n
=
1
∞
u
n
和
∑
n
=
1
∞
v
n
敛
散
性
相
同
;
当
l
=
0
时
,
若
∑
n
=
1
∞
v
n
收
敛
,
则
∑
n
=
1
∞
u
n
收
敛
;
当
l
=
+
∞
时
,
若
∑
n
=
1
∞
v
n
发
散
,
则
∑
n
=
1
∞
u
n
发
散
;
\displaystyle\lim_{n\to\infty}\frac{u_n}{v_n}=l,\begin{cases} 0\lt l\lt+\infty时,\displaystyle\sum_{n=1}^{\infty}u_n和\displaystyle\sum_{n=1}^{\infty}v_n敛散性相同;\\ 当l=0时,若\displaystyle\sum_{n=1}^{\infty}v_n收敛,则\displaystyle\sum_{n=1}^{\infty}u_n收敛;\\ 当l=+\infty时,若\displaystyle\sum_{n=1}^{\infty}v_n发散,则\displaystyle\sum_{n=1}^{\infty}u_n发散; \end{cases}
n→∞limvnun=l,⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎧0<l<+∞时,n=1∑∞un和n=1∑∞vn敛散性相同;当l=0时,若n=1∑∞vn收敛,则n=1∑∞un收敛;当l=+∞时,若n=1∑∞vn发散,则n=1∑∞un发散;
补充说明:①;比较法的关键是,找一个好的比较对象,例如等比级数与P级数;
②比较法极限形式的关键是“找同阶无穷小或等价无穷小”。
4)比值法(达朗贝宁
d
′
A
l
e
m
b
e
r
t
d'Alembert
d′Alembert判别法)
给出一正项级数
∑
n
=
1
∞
u
n
\displaystyle\sum_{n=1}^{\infty}u_n
n=1∑∞un,如果
lim
n
→
∞
u
n
+
1
u
n
=
ρ
,
{
0
<
ρ
<
1
,
收
敛
ρ
>
1
,
发
敛
ρ
=
1
,
不
确
定
(
∑
n
=
1
∞
1
n
发
散
,
∑
n
=
1
∞
1
n
2
收
敛
)
\displaystyle\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\rho, \begin{cases} 0\lt\rho\lt1,收敛\\ \rho\gt1,发敛\\ \rho=1,不确定(\displaystyle\sum_{n=1}^{\infty}\frac{1}{n}发散,\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2}收敛) \end{cases}
n→∞limunun+1=ρ,⎩⎪⎪⎪⎨⎪⎪⎪⎧0<ρ<1,收敛ρ>1,发敛ρ=1,不确定(n=1∑∞n1发散,n=1∑∞n21收敛)
5)根值法(柯西判别法)
给出一正项级数
∑
n
=
1
∞
u
n
\displaystyle\sum_{n=1}^{\infty}u_n
n=1∑∞un,如果
lim
n
→
∞
u
n
n
=
ρ
,
{
0
<
ρ
<
1
,
收
敛
ρ
>
1
,
发
敛
ρ
=
1
,
不
确
定
\displaystyle\lim_{n\to\infty}\sqrt[n]{u_n}=\rho, \begin{cases} 0\lt\rho\lt1,收敛\\ \rho\gt1,发敛\\ \rho=1,不确定 \end{cases}
n→∞limnun=ρ,⎩⎪⎨⎪⎧0<ρ<1,收敛ρ>1,发敛ρ=1,不确定
补充说明:①;比值法、根值法实际上是与等比级数做比较,当
l
=
1
l=1
l=1时,用比较法或定义判别;
②根值法的应用范围比比值法更广。
6)极限审敛法
如果
lim
n
→
∞
n
u
n
=
l
>
0
\displaystyle\lim_{n\to\infty}nu_n=l\gt0
n→∞limnun=l>0(或
lim
n
→
∞
n
u
n
=
+
∞
\displaystyle\lim_{n\to\infty}nu_n=+\infty
n→∞limnun=+∞),则级数
∑
n
=
1
∞
u
n
\displaystyle\sum_{n=1}^{\infty}u_n
n=1∑∞un发散;
如果
p
>
1
p\gt1
p>1,而
lim
n
→
∞
n
p
u
n
=
l
(
0
≤
l
<
+
∞
)
\displaystyle\lim_{n\to\infty}n^pu_n=l(0\le l\lt+\infty)
n→∞limnpun=l(0≤l<+∞),则级数
∑
n
=
1
∞
u
n
\displaystyle\sum_{n=1}^{\infty}u_n
n=1∑∞un收敛。
(2)交错级数及其审敛法
形如 ∑ n = 1 ∞ ( − 1 ) n u n \displaystyle\sum_{n=1}^{\infty}(-1)^nu_n n=1∑∞(−1)nun或 ∑ n = 1 ∞ ( − 1 ) n − 1 u n ( u n > 0 ) \displaystyle\sum_{n=1}^{\infty}(-1)^{n-1}u_n(u_n\gt0) n=1∑∞(−1)n−1un(un>0),各项正负相间出现的级数称为交错级数。
交错级数审敛法——莱布尼茨定理
如果交错级数
∑
n
=
1
∞
(
−
1
)
n
−
1
u
n
\displaystyle\sum_{n=1}^{\infty}(-1)^{n-1}u_n
n=1∑∞(−1)n−1un满足条件:
①
u
n
≥
u
n
+
1
(
n
=
1
,
2
,
3
,
⋯
)
;
②
lim
n
→
∞
u
n
=
0
①u_n\geq u_{n+1}(n=1,2,3,\cdots);②\displaystyle\lim_{n\to\infty}u_n=0
①un≥un+1(n=1,2,3,⋯);②n→∞limun=0,
则级数收敛,且其和
S
≤
u
1
S\leq u_1
S≤u1,余项
r
n
r_n
rn的绝对值
∣
r
n
∣
≤
u
n
+
1
|r_n|\leq u_{n+1}
∣rn∣≤un+1。
(3)任意项级数
定义
讨论一般的级数
u
1
+
u
2
+
⋯
+
u
n
+
⋯
,
u_1+u_2+\cdots+u_n+\cdots,
u1+u2+⋯+un+⋯,它的各项为任意实数,该级数即为任意项级数。
绝对收敛&条件收敛
定义1 如果(任意项)级数
∑
n
=
1
∞
u
n
\displaystyle\sum_{n=1}^{\infty}u_n
n=1∑∞un各项的绝对值构成的正项级数
∑
n
=
1
∞
∣
u
n
∣
\displaystyle\sum_{n=1}^{\infty}|u_n|
n=1∑∞∣un∣收敛,则称(任意项)级数
∑
n
=
1
∞
u
n
\displaystyle\sum_{n=1}^{\infty}u_n
n=1∑∞un绝对收敛。
定义2 如果(任意项)级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1∑∞un收敛,而级数 ∑ n = 1 ∞ ∣ u n ∣ \displaystyle\sum_{n=1}^{\infty}|u_n| n=1∑∞∣un∣发散,则称(任意项)级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1∑∞un条件收敛。
定理3 如果(任意项)级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1∑∞un绝对收敛,那么它本身一定收敛。
性质4 收敛级数的项任意加括号后所得的新级数仍然收敛,且 其和不变。
相关结论:若加括号后所得到的新级数发散,则原级数也发散。
性质5 若原级数绝对收敛,不论将其各项如何重新排列,所得到的新级数也绝对收敛,且其和不变。(绝对收敛级数具有可交换性)
3、幂级数及其收敛域
(1)概念
函数项级数
如果给定一个定义在区间
I
I
I上的函数列
u
1
(
x
)
,
u
2
(
x
)
,
u
3
(
x
)
,
⋯
,
u
n
(
x
)
,
⋯
u_1(x),u_2(x),u_3(x),\cdots,u_n(x),\cdots
u1(x),u2(x),u3(x),⋯,un(x),⋯则由这个函数列构成的表达式
u
1
(
x
)
+
u
2
(
x
)
+
u
3
(
x
)
+
⋯
+
u
n
(
x
)
+
⋯
(8.2)
u_1(x)+u_2(x)+u_3(x)+\cdots+u_n(x)+\cdots\tag{8.2}
u1(x)+u2(x)+u3(x)+⋯+un(x)+⋯(8.2)称为定义在区间
I
I
I上的函数项无穷级数,简称函数项级数。
对于每一个确定值
x
0
∈
I
x_0\in I
x0∈I,函数项级数8.2成为常数项级数
u
1
(
x
0
)
+
u
2
(
x
0
)
+
u
3
(
x
0
)
+
⋯
+
u
n
(
x
0
)
+
⋯
(8.3)
u_1(x_0)+u_2(x_0)+u_3(x_0)+\cdots+u_n(x_0)+\cdots\tag{8.3}
u1(x0)+u2(x0)+u3(x0)+⋯+un(x0)+⋯(8.3)这个级数可能收敛也可能发散。
收敛点&发散点
如果级数8.3收敛,就称点
x
0
x_0
x0是函数项级数8.2的收敛点;如果级数8.3发散,就称点
x
0
x_0
x0是函数项级数8.2的发散点。
收敛域&发散域
函数项级数8.2的收敛点全体称为收敛域,发散点的全体称为发散域。
幂级数
若
∑
n
=
0
∞
u
n
(
x
)
\sum_{n=0}^{\infty}u_{n}(x)
∑n=0∞un(x)的一般项
u
n
(
x
)
u_{n}(x)
un(x)是
n
n
n次幂函数,则称
∑
n
=
0
∞
u
n
(
x
)
\sum_{n=0}^{\infty}u_{n}(x)
∑n=0∞un(x)为幂级数,它是一种特殊且常用的函数项级数,其一般形式为
∑
n
=
0
∞
a
n
(
x
−
x
0
)
n
=
a
0
+
a
1
(
x
−
x
0
)
+
a
2
(
x
−
x
0
)
2
+
⋯
+
a
n
(
x
−
x
0
)
n
+
⋯
;
\sum_{n=0}^{\infty}a_{n}(x-x_0)^{n}=a_0+a_1(x-x_0)+a_2(x-x_0)^{2}+\cdots+a_n(x-x_0)^{n}+\cdots;
n=0∑∞an(x−x0)n=a0+a1(x−x0)+a2(x−x0)2+⋯+an(x−x0)n+⋯;其标准形式为
∑
n
=
0
∞
a
n
x
n
=
a
0
+
a
1
x
+
a
2
x
2
+
⋯
+
a
n
x
n
+
⋯
\displaystyle\sum_{n=0}^{\infty}a_{n}x^n=a_0+a_1x+a_2x^2+\cdots+a_nx^n+\cdots
n=0∑∞anxn=a0+a1x+a2x2+⋯+anxn+⋯其中
a
n
(
n
=
0
,
1
,
2
,
⋯
)
a_n(n=0,1,2,\cdots)
an(n=0,1,2,⋯)为幂级数的系数。
阿贝尔定理
当幂级数
∑
n
=
0
∞
a
n
x
n
\sum_{n=0}^{\infty}a_nx^{n}
∑n=0∞anxn在点
x
=
x
1
(
x
1
≠
0
)
x=x_1(x_1\neq0)
x=x1(x1=0)处收敛时,对于满足
∣
x
∣
<
∣
x
1
∣
|x|\lt|x_1|
∣x∣<∣x1∣的一切
x
x
x,幂级数绝对收敛;当幂级数
∑
n
=
0
∞
a
n
x
n
\sum_{n=0}^{\infty}a_nx^{n}
∑n=0∞anxn在点
x
=
x
2
(
x
2
≠
0
)
x=x_2(x_2\neq0)
x=x2(x2=0)处发散时,对于满足
∣
x
∣
>
∣
x
2
∣
|x|\gt|x_2|
∣x∣>∣x2∣的一切
x
x
x,幂级数发散。