八、无穷级数(高数)

八、无穷级数(高数)

  • 八、无穷级数(高数)
    • 0、前言
    • 1、常数项级数
      • (1)级数概念
      • (2)级数性质
      • (3)常用级数
    • 2、级数审敛性的判别方法
      • (1)正项级数及其审敛法
      • (2)交错级数及其审敛法
      • (3)任意项级数
    • 3、幂级数及其收敛域
      • (1)概念


八、无穷级数(高数)

0、前言

级数类型级数形式备注
常数项级数 ∑ n = 1 ∞ u n ( u n > 0 ) \displaystyle \sum_{n=1}^\infty u_n(u_n\gt0) n=1un(un>0)正项级数 ∑ n = 1 ∞ u n \quad\displaystyle \sum_{n=1}^\infty u_n\qquad\qquad\qquad\qquad n=1un
交错级数 ∑ n = 1 ∞ ( − 1 ) n u n \quad\displaystyle\sum_{n=1}^{\infty}(-1)^nu_n n=1(1)nun ∑ n = 1 ∞ ( − 1 ) n − 1 u n \displaystyle\sum_{n=1}^{\infty}(-1)^{n-1}u_n n=1(1)n1un
函数项级数 ∑ n = 1 ∞ u n ( x ) \displaystyle \sum_{n=1}^\infty u_n(x) n=1un(x)3
幂项级数 ∑ n = 1 ∞ u n \displaystyle \sum_{n=1}^\infty u_n n=1un3

1、常数项级数

(1)级数概念

定义  一般的,如果给定一个数列 u 1 , u 2 , u 3 , ⋯   , u n , ⋯   , u_1,u_2,u_3,\cdots,u_n,\cdots, u1,u2,u3,,un,,则由这数列构成的表达式 u 1 + u 2 + u 3 + ⋯ + u n + ⋯ (8.1) u_1+u_2+u_3+\cdots+u_n+\cdots\tag{8.1} u1+u2+u3++un+(8.1)叫做(常数项)无穷级数,简称(常数项)级数,记作 ∑ n = 1 ∞ u n \displaystyle \sum_{n=1}^\infty u_n n=1un,即 ∑ n = 1 ∞ u n = u 1 + u 2 + u 3 + ⋯ + u n + ⋯   , \sum_{n=1}^\infty u_n=u_1+u_2+u_3+\cdots+u_n+\cdots, n=1un=u1+u2+u3++un+,其中,第 n n n u n u_n un叫做级数的一般项。

部分和  作级数(8.1)的前n项的和,得 s n = u 1 + u 2 + u 3 + ⋯ + u n = ∑ i = 1 n u i s_n=u_1+u_2+u_3+\cdots+u_n=\sum_{i=1}^{n}u_i sn=u1+u2+u3++un=i=1nui其中, s n \displaystyle s_n sn被称为级数的部分和。

收敛&发散  当n依次取 1 , 2 , 3 , ⋯ 1,2,3,\cdots 1,2,3,时,构成级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un的部分和数列: s 1 = u 1 , s 2 = u 1 + u 2 , s 3 = u 1 + u 2 + u 3 , ⋯ s n = u 1 + u 2 + ⋯ + u n , ⋯ \begin{aligned} &s_1=u_1,\\ &s_2=u_1+u_2,\\ &s_3=u_1+u_2+u_3,\\ &\cdots\\ &s_n=u_1+u_2+\cdots+u_n,\\ &\cdots\end{aligned} s1=u1,s2=u1+u2,s3=u1+u2+u3,sn=u1+u2++un,如果级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un的部分和数列 { s n } \{s_n\} {sn}有极限,即 lim ⁡ n → ∞ s n = s , \displaystyle\lim_{n\to\infty}s_n=s, nlimsn=s,则称无穷级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un收敛,这时极限 s s s叫做这个级数的和,并写成 s = u 1 + u 2 + ⋯ + u n + ⋯ s=u_1+u_2+\cdots+u_n+\cdots s=u1+u2++un+;如果 { s n } \{s_n\} {sn}没有极限,则称无穷级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un发散

级数余项  当级数收敛时,级数的/部分和数列/存在极限s,极限s与部分和 s n s_n sn的差值 r n = s − s n = u n + 1 + u n + 2 + ⋯ r_n=s-s_n=u_{n+1}+u_{n+2}+\cdots rn=ssn=un+1+un+2+就叫做这个级数的余项,极限s与部分和 s n s_n sn的误差即 ∣ r n ∣ |r_n| rn

(2)级数性质

1)若常数 k ≠ 0 k\neq0 k=0,则 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un ∑ n = 1 ∞ k u n \displaystyle\sum_{n=1}^{\infty}ku_n n=1kun有相同的敛散性,且若 ∑ n = 1 ∞ u n = S \displaystyle\sum_{n=1}^{\infty}u_n=S n=1un=S,则 ∑ n = 1 ∞ k u n = k S . \displaystyle\sum_{n=1}^{\infty}ku_n=kS. n=1kun=kS.

2)设 ∑ n = 1 ∞ u n = S 1 , ∑ n = 1 ∞ v n = S 2 \displaystyle\sum_{n=1}^{\infty}u_n=S_1,\sum_{n=1}^{\infty}v_n=S_2 n=1un=S1,n=1vn=S2,则 ∑ n = 1 ∞ ( u n ± v n ) = ∑ n = 1 ∞ u n ± ∑ n = 1 ∞ v n = S 1 ± S 2 \displaystyle\sum_{n=1}^{\infty}(u_n\pm v_n)=\sum_{n=1}^{\infty}u_n\pm\sum_{n=1}^{\infty}v_n=S_1\pm S_2 n=1(un±vn)=n=1un±n=1vn=S1±S2
补充说明:①若 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un收敛, ∑ n = 1 ∞ v n \displaystyle\sum_{n=1}^{\infty}v_n n=1vn发散,则 ∑ n = 1 ∞ ( u n ± v n ) \displaystyle\sum_{n=1}^{\infty}(u_n\pm v_n) n=1(un±vn)发散。
     ②若 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un发散, ∑ n = 1 ∞ v n \displaystyle\sum_{n=1}^{\infty}v_n n=1vn发散, ∑ n = 1 ∞ ( u n ± v n ) \displaystyle\sum_{n=1}^{\infty}(u_n\pm v_n) n=1(un±vn)不一定发散。

3)在级数中去掉、加上、或改变有限项,不会改变级数的敛散性。

4)若级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un收敛,则对级数的项任意加括号后所构成的级数仍收敛。
补充说明:①加括号后的级数收敛,原级数不一定收敛。( ∑ n = 1 ∞ ( − 1 ) n \displaystyle\sum_{n=1}^{\infty}(-1)^n n=1(1)n发散)
     ②任意加括号时,不能改变原级数的项的顺序。

5)级数收敛的必要条件:若 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un收敛,则 lim ⁡ n → ∞ u n = 0 \displaystyle\lim_{n\to\infty} u_n=0 nlimun=0
补充说明:①级数一般项极限为0,无法推出级数收敛。(调和级数 ∑ n = 1 ∞ 1 n \displaystyle\sum_{n=1}^{\infty}\frac{1}{n} n=1n1发散)
     ②该项常用来判别级数发散。(若 lim ⁡ n → ∞ u n ≠ 0 , \displaystyle\lim_{n\to\infty}u_{n}\ne0, nlimun=0, ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un发散)

(3)常用级数

等比级数(几何级数)
∑ n = 0 ∞ a q n = a + a q + a q 2 + ⋯ + a q n + ⋯ \displaystyle\sum_{n=0}^{\infty}aq^{n}=a+aq+aq^2+\cdots+aq^n+\cdots n=0aqn=a+aq+aq2++aqn+
其部分和为:
S n = a + a q + a q 2 + ⋯ + a q n − 1 = { a ( 1 − q n ) 1 − q , q ≠ 1 n a , q = 1 S_n=a+aq+aq^2+\cdots+aq^{n-1}= \begin{cases} \frac{a(1-q^n)}{1-q},&q\ne1\\ na,&q=1 \end{cases} Sn=a+aq+aq2++aqn1={1qa(1qn),na,q=1q=1
说明:
  ①当 ∣ q ∣ < 1 |q|\lt1 q<1时, lim ⁡ n → ∞ S n = a 1 − q \displaystyle\lim_{n\to\infty}S_n=\frac{a}{1-q} nlimSn=1qa,等比级数收敛;
  ②当 ∣ q ∣ > 1 |q|\gt1 q>1时, lim ⁡ n → ∞ S n = ∞ \displaystyle\lim_{n\to\infty}S_n=\infty nlimSn=,等比级数发敛;
  ③当 q = 1 q=1 q=1时, lim ⁡ n → ∞ S n = lim ⁡ n → ∞ n a = ∞ \displaystyle\lim_{n\to\infty}S_n=\lim_{n\to\infty}na=\infty nlimSn=nlimna=,等比级数发散;
  ④当 q = − 1 q=-1 q=1时, lim ⁡ n → ∞ S n \displaystyle\lim_{n\to\infty}S_n nlimSn不存在,等比级数发散;

P级数
∑ n = 0 ∞ 1 n q { 收 敛 , p > 1 , 发 散 , 0 < p ≤ 1. \displaystyle\sum_{n=0}^{\infty}\frac{1}{n^{q}} \begin{cases} 收敛,p\gt1,\\ 发散,0\lt p\le1. \end{cases} n=0nq1{p>1,0<p1.

举例:
∑ n = 1 ∞ 1 n 调 和 级 数 , 发 散 \displaystyle\sum_{n=1}^{\infty}\frac{1}{n}调和级数,发散 n=1n1 ∑ n = 1 ∞ − 1 n 交 错 级 数 , 条 件 收 敛 \displaystyle\sum_{n=1}^{\infty}-\frac{1}{n}交错级数,条件收敛 n=1n1

2、级数审敛性的判别方法

(1)正项级数及其审敛法

∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un,若通项 u n ≥ 0 u_n\ge0 un0,则称该级数为正项级数。判断正项级数审敛性有以下五种方法:

1)充要条件: ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un收敛 ⟺ \Longleftrightarrow 部分和 { S n } \{S_n\} {Sn}有界。

2)比较法
u n ≤ k v n ( k > 0 ) u_n\le kv_n(k\gt0) unkvn(k>0),若 ∑ n = 1 ∞ v n \displaystyle\sum_{n=1}^{\infty}v_n n=1vn收敛,则 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un收敛;若 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un发散,则 ∑ n = 1 ∞ v n \displaystyle\sum_{n=1}^{\infty}v_n n=1vn发散。
大的收敛,小的收敛,小的发散,大的发散。

3)比较法的极限形式
lim ⁡ n → ∞ u n v n = l , { 0 < l < + ∞ 时 , ∑ n = 1 ∞ u n 和 ∑ n = 1 ∞ v n 敛 散 性 相 同 ; 当 l = 0 时 , 若 ∑ n = 1 ∞ v n 收 敛 , 则 ∑ n = 1 ∞ u n 收 敛 ; 当 l = + ∞ 时 , 若 ∑ n = 1 ∞ v n 发 散 , 则 ∑ n = 1 ∞ u n 发 散 ; \displaystyle\lim_{n\to\infty}\frac{u_n}{v_n}=l,\begin{cases} 0\lt l\lt+\infty时,\displaystyle\sum_{n=1}^{\infty}u_n和\displaystyle\sum_{n=1}^{\infty}v_n敛散性相同;\\ 当l=0时,若\displaystyle\sum_{n=1}^{\infty}v_n收敛,则\displaystyle\sum_{n=1}^{\infty}u_n收敛;\\ 当l=+\infty时,若\displaystyle\sum_{n=1}^{\infty}v_n发散,则\displaystyle\sum_{n=1}^{\infty}u_n发散; \end{cases} nlimvnun=l,0<l<+n=1unn=1vnl=0n=1vnn=1unl=+n=1vnn=1un
补充说明:①;比较法的关键是,找一个好的比较对象,例如等比级数与P级数;
     ②比较法极限形式的关键是“找同阶无穷小或等价无穷小”。

4)比值法(达朗贝宁 d ′ A l e m b e r t d'Alembert dAlembert判别法)
给出一正项级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un,如果 lim ⁡ n → ∞ u n + 1 u n = ρ , { 0 < ρ < 1 , 收 敛 ρ > 1 , 发 敛 ρ = 1 , 不 确 定 ( ∑ n = 1 ∞ 1 n 发 散 , ∑ n = 1 ∞ 1 n 2 收 敛 ) \displaystyle\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\rho, \begin{cases} 0\lt\rho\lt1,收敛\\ \rho\gt1,发敛\\ \rho=1,不确定(\displaystyle\sum_{n=1}^{\infty}\frac{1}{n}发散,\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2}收敛) \end{cases} nlimunun+1=ρ,0<ρ<1,ρ>1,ρ=1,(n=1n1n=1n21)

5)根值法(柯西判别法)
给出一正项级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un,如果 lim ⁡ n → ∞ u n n = ρ , { 0 < ρ < 1 , 收 敛 ρ > 1 , 发 敛 ρ = 1 , 不 确 定 \displaystyle\lim_{n\to\infty}\sqrt[n]{u_n}=\rho, \begin{cases} 0\lt\rho\lt1,收敛\\ \rho\gt1,发敛\\ \rho=1,不确定 \end{cases} nlimnun =ρ,0<ρ<1,ρ>1,ρ=1,
补充说明:①;比值法、根值法实际上是与等比级数做比较,当 l = 1 l=1 l=1时,用比较法或定义判别;
     ②根值法的应用范围比比值法更广。

6)极限审敛法
如果 lim ⁡ n → ∞ n u n = l > 0 \displaystyle\lim_{n\to\infty}nu_n=l\gt0 nlimnun=l>0(或 lim ⁡ n → ∞ n u n = + ∞ \displaystyle\lim_{n\to\infty}nu_n=+\infty nlimnun=+),则级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un发散;
如果 p > 1 p\gt1 p>1,而 lim ⁡ n → ∞ n p u n = l ( 0 ≤ l < + ∞ ) \displaystyle\lim_{n\to\infty}n^pu_n=l(0\le l\lt+\infty) nlimnpun=l(0l<+),则级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un收敛。

(2)交错级数及其审敛法

形如 ∑ n = 1 ∞ ( − 1 ) n u n \displaystyle\sum_{n=1}^{\infty}(-1)^nu_n n=1(1)nun ∑ n = 1 ∞ ( − 1 ) n − 1 u n ( u n > 0 ) \displaystyle\sum_{n=1}^{\infty}(-1)^{n-1}u_n(u_n\gt0) n=1(1)n1un(un>0),各项正负相间出现的级数称为交错级数。

交错级数审敛法——莱布尼茨定理
如果交错级数 ∑ n = 1 ∞ ( − 1 ) n − 1 u n \displaystyle\sum_{n=1}^{\infty}(-1)^{n-1}u_n n=1(1)n1un满足条件: ① u n ≥ u n + 1 ( n = 1 , 2 , 3 , ⋯   ) ; ② lim ⁡ n → ∞ u n = 0 ①u_n\geq u_{n+1}(n=1,2,3,\cdots);②\displaystyle\lim_{n\to\infty}u_n=0 unun+1(n=1,2,3,)nlimun=0
则级数收敛,且其和 S ≤ u 1 S\leq u_1 Su1,余项 r n r_n rn的绝对值 ∣ r n ∣ ≤ u n + 1 |r_n|\leq u_{n+1} rnun+1

(3)任意项级数

定义
  讨论一般的级数 u 1 + u 2 + ⋯ + u n + ⋯   , u_1+u_2+\cdots+u_n+\cdots, u1+u2++un+,它的各项为任意实数,该级数即为任意项级数。

绝对收敛&条件收敛
定义1  如果(任意项)级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un各项的绝对值构成的正项级数 ∑ n = 1 ∞ ∣ u n ∣ \displaystyle\sum_{n=1}^{\infty}|u_n| n=1un收敛,则称(任意项)级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un绝对收敛

定义2  如果(任意项)级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un收敛,而级数 ∑ n = 1 ∞ ∣ u n ∣ \displaystyle\sum_{n=1}^{\infty}|u_n| n=1un发散,则称(任意项)级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un条件收敛

定理3  如果(任意项)级数 ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^{\infty}u_n n=1un绝对收敛,那么它本身一定收敛。

性质4  收敛级数的项任意加括号后所得的新级数仍然收敛,且 其和不变。
在这里插入图片描述
相关结论:若加括号后所得到的新级数发散,则原级数也发散。

性质5  若原级数绝对收敛,不论将其各项如何重新排列,所得到的新级数也绝对收敛,且其和不变。(绝对收敛级数具有可交换性)

3、幂级数及其收敛域

(1)概念

函数项级数
如果给定一个定义在区间 I I I上的函数列 u 1 ( x ) , u 2 ( x ) , u 3 ( x ) , ⋯   , u n ( x ) , ⋯ u_1(x),u_2(x),u_3(x),\cdots,u_n(x),\cdots u1(x),u2(x),u3(x),,un(x),则由这个函数列构成的表达式 u 1 ( x ) + u 2 ( x ) + u 3 ( x ) + ⋯ + u n ( x ) + ⋯ (8.2) u_1(x)+u_2(x)+u_3(x)+\cdots+u_n(x)+\cdots\tag{8.2} u1(x)+u2(x)+u3(x)++un(x)+(8.2)称为定义在区间 I I I上的函数项无穷级数,简称函数项级数。
对于每一个确定值 x 0 ∈ I x_0\in I x0I,函数项级数8.2成为常数项级数 u 1 ( x 0 ) + u 2 ( x 0 ) + u 3 ( x 0 ) + ⋯ + u n ( x 0 ) + ⋯ (8.3) u_1(x_0)+u_2(x_0)+u_3(x_0)+\cdots+u_n(x_0)+\cdots\tag{8.3} u1(x0)+u2(x0)+u3(x0)++un(x0)+(8.3)这个级数可能收敛也可能发散。

收敛点&发散点
如果级数8.3收敛,就称点 x 0 x_0 x0是函数项级数8.2的收敛点;如果级数8.3发散,就称点 x 0 x_0 x0是函数项级数8.2的发散点

收敛域&发散域
函数项级数8.2的收敛点全体称为收敛域,发散点的全体称为发散域

幂级数
∑ n = 0 ∞ u n ( x ) \sum_{n=0}^{\infty}u_{n}(x) n=0un(x)的一般项 u n ( x ) u_{n}(x) un(x) n n n次幂函数,则称 ∑ n = 0 ∞ u n ( x ) \sum_{n=0}^{\infty}u_{n}(x) n=0un(x)为幂级数,它是一种特殊且常用的函数项级数,其一般形式为 ∑ n = 0 ∞ a n ( x − x 0 ) n = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + ⋯ + a n ( x − x 0 ) n + ⋯   ; \sum_{n=0}^{\infty}a_{n}(x-x_0)^{n}=a_0+a_1(x-x_0)+a_2(x-x_0)^{2}+\cdots+a_n(x-x_0)^{n}+\cdots; n=0an(xx0)n=a0+a1(xx0)+a2(xx0)2++an(xx0)n+;其标准形式为
∑ n = 0 ∞ a n x n = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n + ⋯ \displaystyle\sum_{n=0}^{\infty}a_{n}x^n=a_0+a_1x+a_2x^2+\cdots+a_nx^n+\cdots n=0anxn=a0+a1x+a2x2++anxn+其中 a n ( n = 0 , 1 , 2 , ⋯   ) a_n(n=0,1,2,\cdots) an(n=0,1,2,)为幂级数的系数。

阿贝尔定理
  当幂级数 ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty}a_nx^{n} n=0anxn在点 x = x 1 ( x 1 ≠ 0 ) x=x_1(x_1\neq0) x=x1(x1=0)处收敛时,对于满足 ∣ x ∣ < ∣ x 1 ∣ |x|\lt|x_1| x<x1的一切 x x x,幂级数绝对收敛;当幂级数 ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty}a_nx^{n} n=0anxn在点 x = x 2 ( x 2 ≠ 0 ) x=x_2(x_2\neq0) x=x2(x2=0)处发散时,对于满足 ∣ x ∣ > ∣ x 2 ∣ |x|\gt|x_2| x>x2的一切 x x x,幂级数发散

其他章节内容
一、函数、极限、连续
二、一元函数微分学及其应用
四、空间解析几何
七、微分方程及其应用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值