本文介绍Mask R-CNN标注工具labelme在ubuntu与Windows使用。
labelme的git:https://github.com/wkentaro/labelme
ubuntu:
1、安装labelme
sudo
apt-get install python-qt4 pyqt4-dev-tools
sudo
pip install labelme # python2 works
2、运行Rename文件,将图片重新命名(目的是为了不让一些命名符号干扰到labelme)
# -*- coding: utf-8 -*-
import os
import shutil
path='./'##更改为自己图片的目录,最好是绝对路径
files=os.listdir(path)
for num,file in enumerate(files):
if os.path.splitext(file)[-1]=='.jpg':
last_name=os.path.join(path,file)
now_name=os.path.join(path,str(num)+'.jpg')
if now_name==last_name:
continue
#shutil.copy(last_name,now_name)
os.rename(last_name,now_name)
3、运行labelme:
3.1在终端中输入 labelme
3.2出现labelme的界面
3.3点击Opendir进入图片的目录开始标注
标注注意事项:
假如你要标注的对象为人和狗,在画掩码过程中,一幅图像中如果有多个person、dog,命名规则为person1、person2…… dog1、dog2……。因为labelme生成的标签为一个label.png文件,这个文件只有一通道,在你标注时同一标签mask会被给予一个标签位,而mask要求不同的实例要放在不同的层中。最终训练索要得到的输入为一个w*h*n的ndarray,其中n为该图片中实例的个数。
3.4 标注结束后会在对应目录产生一个图片的json文件
4 运行json_to_data.sh文件
在终端中输入:./json_to_data.sh(将路径更改为图片的路径(跟上面Rename一样的目录即可)就可以批次处理)
#!/bin/bash
s1="/home/hx/Mask/"
s2=".json"
for((i=0;i<12;i++))
do
s3=${i}
labelme_json_to_dataset ${s1}${s3}${s2}
done
可得到一个文件夹,里面有五个文件,分别是:
*.png
info.yaml
label.png
label_names.txt
label_viz.png
其中 label.png 和 info.yaml 是我们需要用到的! 标注已经完成!
label.png相当于mask 文件,可视化为:
Windows下
1、安装labelme(我自己用的python3)
python2
pip install pyqt
pip install labelme
python3
pip install pyqt5
pip install labelme
2、同Ubuntu一样
3、同ubuntu一样
4、批次处理的时候
后面输入保存图片与json文件的路径,生成的Mask文件夹也放在该文件下如下图所示:
5 修改源代码
labelme的源代码只能处理一个json文件,而且labelme_json_to_dataset.exe后面输入的是json文件的绝对路径。所以只能处理一个json文件,因此修改了源代码。
import argparse
import base64
import json
import os
import os.path as osp
import warnings
import PIL.Image
import yaml
from labelme import utils
def main():
warnings.warn("This script is aimed to demonstrate how to convert the\n"
"JSON file to a single image dataset, and not to handle\n"
"multiple JSON files to generate a real-use dataset.")
parser = argparse.ArgumentParser()
parser.add_argument('json_file')
parser.add_argument('-o', '--out', default=None)
args = parser.parse_args()
json_file = args.json_file
files=os.listdir(json_file)
for file in files:
if os.path.splitext(file)[-1]=='.json':
path=os.path.join(json_file,file)
if args.out is None:
out_dir = osp.basename(path).replace('.', '_')
out_dir = osp.join(osp.dirname(path), out_dir)
else:
out_dir = args.out
if not osp.exists(out_dir):
os.mkdir(out_dir)
data = json.load(open(path))
if data['imageData']:
imageData = data['imageData']
else:
imagePath = os.path.join(os.path.dirname(json_file), data['imagePath'])
with open(imagePath, 'rb') as f:
imageData = f.read()
imageData = base64.b64encode(imageData).decode('utf-8')
img = utils.img_b64_to_arr(imageData)
label_name_to_value = {'_background_': 0}
for shape in sorted(data['shapes'], key=lambda x: x['label']):
label_name = shape['label']
if label_name in label_name_to_value:
label_value = label_name_to_value[label_name]
else:
label_value = len(label_name_to_value)
label_name_to_value[label_name] = label_value
lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)
label_names = [None] * (max(label_name_to_value.values()) + 1)
for name, value in label_name_to_value.items():
label_names[value] = name
lbl_viz = utils.draw_label(lbl, img, label_names)
PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png'))
utils.lblsave(osp.join(out_dir, 'label.png'), lbl)
PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png'))
with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
for lbl_name in label_names:
f.write(lbl_name + '\n')
warnings.warn('info.yaml is being replaced by label_names.txt')
info = dict(label_names=label_names)
with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
yaml.safe_dump(info, f, default_flow_style=False)
print('Saved to: %s' % out_dir)
if __name__ == '__main__':
main()
把上述代码替换之前json_to_dataset.py文件。(之前的json_to_dataset.py在C:\Users\Han\Anaconda3\envs\tensorflow\Lib\site-packages\labelme\cli)这样替换完,执行4的命令就可以完成批处理。
参考博客: