随着对深度学习的不断加深,需要对卷积神经网络的基础进一步巩固,那么对于卷积功能的操作是必须理解的
如上所示:
(1) nin代表输入的特征图的尺寸、p代表的是padding指数、k代表的是卷积核的大小,s代表卷积的步长,nout代表输出特征图的尺寸大小;
(2)jin代表输入特征图特征与特征之间的距离;s代表卷积的步长;jout代表输出特征图的特征与特征之间的距离;
(3)rin代表输入特征图的每个特征相对于原图的感受野;k代表着卷积核的大小;jin代表着输入特征图之间每个特征之间的距离,rout代表着输出特征图每个特征的感受野;
(4)startin代表输入的第一个输入特征的中心位置;(k-1)/2代表第一个特征到第一个卷积核中心的距离,pjin代表着填充区域的大小,startout代表着输出特征图第一个特征中心位置;
参考博客https://blog.csdn.net/u010725283/article/details/78593410