对CNN感受野的理解加公式

随着对深度学习的不断加深,需要对卷积神经网络的基础进一步巩固,那么对于卷积功能的操作是必须理解的

如上所示:

(1) nin代表输入的特征图的尺寸、p代表的是padding指数、k代表的是卷积核的大小,s代表卷积的步长,nout代表输出特征图的尺寸大小;

(2)jin代表输入特征图特征与特征之间的距离;s代表卷积的步长;jout代表输出特征图的特征与特征之间的距离;

(3)rin代表输入特征图的每个特征相对于原图的感受野;k代表着卷积核的大小;jin代表着输入特征图之间每个特征之间的距离,rout代表着输出特征图每个特征的感受野;

(4)startin代表输入的第一个输入特征的中心位置;(k-1)/2代表第一个特征到第一个卷积核中心的距离,pjin代表着填充区域的大小,startout代表着输出特征图第一个特征中心位置;

参考博客https://blog.csdn.net/u010725283/article/details/78593410

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值