【Ubantu版本:18.04 RKNN版本:1.14.0 cuda版本:9.0】

【Ubantu版本:18.04 RKNN版本:1.14.0 cuda版本:9.0】安装以及转换过程记录。

  1. 环境的安装:之前安装的版本是根据给出的安装说明书里的步骤安装的rknn1.3.0,但是会报错如下:ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory 这就显示该环境下你的CUDA的版本和你的TF版本是不匹配的,需要该TF版本安装CUDA为9.0的环境。ubantu可以自己创建软连接,所以你可以安装8.0、9.0、10.0、10.1的各种软连接的版本。

安装CUDA9.0

因为我的环境下没得9.0,所以就得安装9.0的版本,直接取NVIDIA的官网下载9.0 的CUDA文件安装即可。
下载地址自己找下.run文件 名称是:cuda_9.0.176_384.81_linux.run
ubantu执行命令:

sudo chmod +x cuda_9.0.176_384.81_linux.run # 为 cuda_9.0.176_384.81_linux.run 添加可执行权限
sudo sh /你的路径/cuda_9.0.176_384.81_linux.run # 安装 cuda_9.0.176_384.81_linux.run
即可安装

先按q退出说明
Do you accept the previously read EULA?
accept/decline/quit: accept

Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 384.81?
(y)es/(n)o/(q)uit: n # 如果在这之前已经安装好更高版本的显卡驱动就不需要再重复安装,如果需要重复安装就选择 yes,此外还需要关闭图形界面。

Install the CUDA 9.0 Toolkit?
(y)es/(n)o/(q)uit: y

Enter Toolkit Location
 [ default is /usr/local/cuda-9.0 ]: # 一般选择默认即可,也可以选择安装在其他目录,在需要用的时候指向该目录或者使用软连接 link 到 /usr/local/cuda。

/usr/local/cuda-9.0 is not writable.
Do you wish to run the installation with 'sudo'?
(y)es/(n)o: y

Please enter your password: 
Do you want to install a symbolic link at /usr/local/cuda? # 是否将安装目录通过软连接的方式 link 到 /usr/local/cuda,yes or no 都可以,取决于你是否使用 /usr/local/cuda 为默认的 cuda 目录。
(y)es/(n)o/(q)uit: n

Install the CUDA 9.0 Samples?
(y)es/(n)o/(q)uit: n
这里注意不要安装他的驱动即可

安装完检查是否安装完全:

cd /usr/local/
ls
出现bin   cuda-10.0  cuda-8.0  etc    include  man   share
cuda  cuda-10.1  cuda-9.0  games  lib      sbin  src
直接在该环境下 cuda的调用是靠cuda文件夹进行的。这里需要改变cuda版本的话先删除cuda文件夹:rm -rf /usr/local/cuda
接着重新建立软连接:sudo ln -s /usr/local/cuda-9.0/ /usr/local/cuda就完成了切换
后面直接 nvcc -V 查看版本

RKNN的安装版本

安装的是版本:rknn1.4.0,直接安装包里面的requiresments.txt ,然后随便你安装GPU或者CPU版本的requiresments.txt。安装过程如下:

sudo apt install virtualenv
sudo apt-get install libpython3.6-dev
sudo apt install python3-tk
virtualenv -p /usr/bin/python3 venv
source venv/bin/activate
pip install -r requirements.txt -i 清华园或是豆瓣元 自己添加
pip install -r requirements-gpu.txt or requirements-cpu.txt 自己选择 没啥大问题
最后安装pip install 你的路径下的/rknn_toolkit-1.4.0-cp36-cp36m-linux_x86_64.whl
最后验证自己是否正确安装了rknn如下:
打开命令行
(base) XXXXXXXXXXXXXX:~$ source venv/bin/activate #激活你的RKNN的环境
(venv) XXXXXXXXXXXXXX:~$ python -m rknn.bin.visualization #打开rknn的图形显示其

图片显示如下:
zzc选择TensorflowLite得到如下界面:
请添加图片描述自己选择RKNN的适用平台等等参数,点击下一步,选择自己的模型,点击下一步就能得到自己的RKNN的模型了。like this:请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值