模型推理加速

该文介绍了不同深度学习框架下的模型推理应用,包括PyTorch的TorchScript、ONNXRuntime、OpenVINO的模型,以及TensorRT、CoreML、TensorFlowSavedModel、TensorFlowGraphDef、TensorFlowLite和针对EdgeTPU优化的模型,还有PaddlePaddle的模型推理实现。
摘要由CSDN通过智能技术生成

模型推理

 $ python detect.py --weights yolov5s.pt                 # PyTorch
                                 yolov5s.torchscript        # TorchScript  XXX
                                 yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
                                 yolov5s_openvino_model     # OpenVINO  OK
                                 yolov5s.engine             # TensorRT  OK 
                                 yolov5s.mlmodel            # CoreML (macOS-only) XXX
                                 yolov5s_saved_model        # TensorFlow SavedModel 
                                 yolov5s.pb                 # TensorFlow GraphDef 
                                 yolov5s.tflite             # TensorFlow Lite  XXX
                                 yolov5s_edgetpu.tflite     # TensorFlow Edge TPU  XX
                                 yolov5s_paddle_model       # PaddlePaddle XXX
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值