RNA-seq流程学习笔记(17)- PCA图聚类分析

本文记录了RNA-seq数据处理中的PCA图制作和聚类分析过程,探讨了如何通过PCA揭示样本间的差异,并利用聚类方法对样本进行分类,为后续生物信息学研究提供关键洞察。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#绘制PCA图
#需要使用各组的FPKM进行绘制
#对FPKM数据进行整理
#清空环境变量
rm(list=ls())

##将StringTie分析得到的含有FPKM数据的TAB文件导入当前工作环境中

#设置工作目录
setwd("G:/kongyu/RNA-seq/2021_02_22/gene_tab/")

DIPG4_1_1.gene.tab <- read.table("G:/kongyu/RNA-seq/2021_02_22/gene_tab/DIPG4_1_1.gene.tab", header = TRUE, sep = "\t" , quote = "\"")
DIPG4_1_2.gene.tab <- read.table("G:/kongyu/RNA-seq/2021_02_22/gene_tab/DIPG4_1_2.gene.tab", header = TRUE, sep = "\t" , quote = "\"")
DIPG4_2_1.gene.tab <- read.table("G:/kongyu/RNA-seq/2021_02_22/gene_tab/DIPG4_2_1.gene.tab", header = TRUE, sep = "\t" , quote = "\"")
DIPG4_2_2.gene.tab <- read.table("G:/kongyu/RNA-seq/2021_02_22/gene_tab/DIPG4_2_2.gene.tab", header = TRUE, sep = "\t" , quote = "\"")
DIPG4_3_1.gene.tab <- read.table("G:/kongyu/RNA-seq/2021_02_22/gene_tab/DIPG4_3_1.gene.tab", header = TRUE, sep = "\t" , quote = "\"")
DIPG4_3_2.gene.tab <- read.table("G:/kongyu/RNA-seq/2021_02_22/gene_tab/DIPG4_3_2.gene.tab", header = TRUE, sep = "\t" , quote = "\"")
DIPG4_4_1.gene.tab <- read.table("G:/kongyu/RNA-seq/2021_02_22/gene_tab/DIPG4_4_1.gene.tab", header = TRUE, sep = "\t" , quote = "\"")
DIPG4_4_2.gene.tab <- read.table("G:/kongyu/RNA-seq/2021_02_22/gene_tab/DIPG4_4_2.gene.tab"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值