BOW词袋模型

词袋模型(Bag-of-words model ,BoW model)最初被用在信息检索领域。该模型忽略文本的语法和语序,将其仅仅看作是若干个词汇的集合,文档中每个单词的出现都是独立的。BoW使用一组无序的单词(words)来表达一段文字或一个文档。

例子:

有三个句子如下:

sentence1: Kid likes to watch movies. John likes too.
sentence2: Kid also likes to watch football games.

首先根据预料中的两个句子构建词袋:

{"Kid": 1, "likes": 2,"to": 3, "watch": 4, "movies": 5,"also": 6, "football": 7, "games": 8,"John": 9, "too": 10}

其中key为词,value为词的索引,预料中共有10个单词, 那么每个文本我们就可以使用一个10维的向量来表示。

那么上述文本可以表示为:

sentence1: [1, 2, 1, 1, 1, 0, 0, 0, 1, 1]

sentence2: [1, 1, 1, 1, 0, 1, 1, 1, 0, 0]

该向量与原来文本中单词出现的顺序没有关系,仅仅是词典中每个单词在文本中出现的频率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值