class DBSCAN(BaseEstimator, ClusterMixin):
"""Perform DBSCAN clustering from vector array or distance matrix.
DBSCAN - Density-Based Spatial Clustering of Applications with Noise.
Finds core samples of high density and expands clusters from them.
Good for data which contains clusters of similar density.
Read more in the :ref:`User Guide <dbscan>`.
Parameters
----------
eps : float, optional 同一个簇中样本的最大距离 默认:0.5
min_samples : int, optional 一个簇中的至少需要包含的样本数 默认:5
metric : string, or callable 最距离公式,可以用默认的欧式距离,还可以自己定义距离函数 默认:euclidean
metric_params : dict, optional 默认:None
Additional keyword arguments for the metric function.
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional 最近邻搜索算法参数 默认:auto
brute是蛮力实现,
kd_tree是KD树实现,
ball_tree是球树实现,
auto则会在三种算法中做权衡,选择一个拟合最好的最优算法
leaf_size : int, optional (default = 30) 使用KD树或者球树时,停止建子树的叶子节点数量的阈值 默认:30
(最近邻搜索算法的参数)
p : float, optional 只用于闵可夫斯基距离和带权重闵可夫斯基距离中p值的选择 默认:None
p=1为曼哈顿距离, p=2为欧式距离
n_jobs : int, optional (default = 1) 使用的进程数量,默认为:1
若值为 -1,则用所有的CPU进行运算
Attributes
----------
core_sample_indices_ : 核心点的索引
因为la