聚类算法学习----之----sklearn.cluster.DBSCAN

这篇博客介绍了如何运用sklearn库的DBSCAN聚类算法进行数据分析。通过示例展示了运行结果,包括20个点的标签分布、核心样本的索引以及聚类组件的坐标值,揭示了DBSCAN在数据分组中的应用。
摘要由CSDN通过智能技术生成

 

 

class DBSCAN(BaseEstimator, ClusterMixin):
    """Perform DBSCAN clustering from vector array or distance matrix.

    DBSCAN - Density-Based Spatial Clustering of Applications with Noise.
    Finds core samples of high density and expands clusters from them.
    Good for data which contains clusters of similar density.

    Read more in the :ref:`User Guide <dbscan>`.

    Parameters
    ----------
    eps : float, optional 同一个簇中样本的最大距离 默认:0.5

    min_samples : int, optional 一个簇中的至少需要包含的样本数 默认:5

    metric : string, or callable 最距离公式,可以用默认的欧式距离,还可以自己定义距离函数 默认:euclidean

    metric_params : dict, optional 默认:None
        Additional keyword arguments for the metric function.

    algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional 最近邻搜索算法参数 默认:auto
        brute是蛮力实现,
        kd_tree是KD树实现,
        ball_tree是球树实现,
        auto则会在三种算法中做权衡,选择一个拟合最好的最优算法

    leaf_size : int, optional (default = 30) 使用KD树或者球树时,停止建子树的叶子节点数量的阈值 默认:30
    (最近邻搜索算法的参数)

    p : float, optional 只用于闵可夫斯基距离和带权重闵可夫斯基距离中p值的选择 默认:None
        p=1为曼哈顿距离, p=2为欧式距离

    n_jobs : int, optional (default = 1) 使用的进程数量,默认为:1
        若值为 -1,则用所有的CPU进行运算

      Attributes
    ----------
    core_sample_indices_ : 核心点的索引
        因为la
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值