一、问题描述
设n是一个正整数。现在要求将n分解为若干个自然数之和,使得自然数的成绩最大。输出这个最大的乘积。
要求:
(1)要求这些自然数互不相同
(2)要求这些自然数可以是相同的
二、问题分析:
这类题一开始需要我们手写几个数来看看规律。先做第一问,要求自然数互不相同。从5开始写起,5=2+3,6=2+4,7=3+4,8=3+5,9=2+3+4,10=2+3+5,11=2+4+5
发现规律如下:
(1)尽量使得元素是连续的。
(2)如果有多出来的,从后往前均匀分配到各个元素。考虑到一种特殊情况,当多出来的数比前面已有元素的个数大1时(比如8的情况),先给已有元素的最大元素加1,然后再均匀分配到每个元素。
下面举个栗子,看看携程实习生招聘笔试的这道题:
题目描述:乘积最大
有一个整数n,将n分解成若干个不同自然数之和,问如何分解能使这些数的乘积最大,输出这个乘积m。
输入:
一个整数,不超过50
输出
一个整数
样例输入
15
样例输出
144
c++代码实现:
#include<iostream>
#include<vector>
using namespacestd;
int main(){
int num;
while(cin>>num){
int flag[100] = {0};
int k=2;
int i=0;
while(num >= k){
//从2开始分解,依次分解为2,3,4,5...连续的元素
flag[i++] = k;
num -= k;
k++;
}
if(num > 0){
//说明有剩余的
if(num == flag[i-1]){
//说明这时候剩余的数正好比已有的元素个数多1,所以要先给最后一个元素加1
flag[i-1]++;
num--;
}
for(int j=i-1;j>=0 &&num>0;j--){
flag[j] ++;
num--;
}
}
int result = 1;
for(int j = 0;j<i;j++){
result *= flag[j];
}
cout<<result<<endl;
}//while
return 0;
}
对于第二问,对于元素可以是相同的
仍然是通过手写几个数查看一下规律:4=2+2,5=2+3,6=3+3,7=3+2+2,8=3+3+2,9=3+3+3。
发现规律如下:
(1)元素不会超过4,因为4=2+2,又可以转化为2的问题,而5=2+3,5<2*3,所以5总能分解成2和3。
(2)尽可能多分解出3,然后分解出2,不要分出1。
考虑任意一个数,除以3之后的结果有以下3种:
(1)能被3除断,那么就分解为3+3+...+3的情况即可。例如9=3+3+3。
(2)被3除余1,分解为3+3+...+3+2+2或者3+3+...+3+4的情况,例如10=3+3+2+2
(3)被3除余2,分解为3+3+...+3+2的情况,例如11=3+3+3+2。
c++代码:
#include<iostream>
#include<math.h>
usingnamespace std;
int main(){
int num;
while(cin>>num){
if(num % 3 == 0){ //考虑被3整除的情况
cout<<pow(3,num/3)<<endl;
continue;
}
int flag[100] = {0};
int i=0;
while(num != 2 && num != 4){
//如果不能被3整除,那么除3必余1或者2,而余1和4是同样的情况,这里取4是因为这种情况下最后是两个2,
//取4就可以直接把4分解为2+2
flag[i++]=3;
num-=3;
}
while(num){ //余2和1的情况,余2就是1个2,余1就是2个2,所以前面才会判断是否等于4,这样就可以化为2个2
flag[i++] = 2;
num-=2;
}
int result = 1;
for(int j=0;j<i;j++){
result *= flag[j];
}
cout<<result<<endl;
}//while
return 0;
}