基于Numpy的线性代数运算

本文介绍了Numpy中的线性代数运算,包括如何创建matrix对象、使用bmat函数,以及算术运算如除法和模运算。详细讲解了通用函数的用法,并深入探讨了线性代数应用,如计算逆矩阵、解线性方程组、求特征值和特征向量。此外,还提到了Numpy在金融函数中的应用。
摘要由CSDN通过智能技术生成

标题中的英文首字母大写比较规范,但在python实际使用中均为小写。

1.Numpy中的matrix

1.1 创建matrix对象

numpy.matrix方法的参数可以为ndarray对象
numpy.matrix方法的参数也可以为字符串str,示例如下:

import numpy as np
m = np.matrix("1 2 3;4 5 6; 7 8 9")
print(m,type(m))

上面一段代码的运行结果如下:

[[1 2 3]
[4 5 6]
[7 8 9]] <class 'numpy.matrixlib.defmatrix.matrix'>

1.2 bmat函数

很神奇的用法, 可以用字符串和已定义的矩阵创建新矩阵。

import numpy as np
a = np.eye(2)
print("a :\n",a)
b = a * 2
print("b :\n",b)
c = np.bmat("a b;b a")
print("c :\n",c)

上面一段代码的运行结果如下:

a :
[[1. 0.]
[0. 1.]]
b :
[[2. 0.]
[0. 2.]]
c :
[[1. 0. 2. 0.]
[0. 1. 0. 2.]
[2. 0. 1. 0.]
[0. 2. 0. 1.]]

2.算术运算

2.1 ndarray对象的除法运算

5种除法运算方式:
1.divide函数:做除法,返回除法的浮点数结果
2.true_divide函数:返回除法的浮点数结果
3.floor_divide函数:做除法,进行向下取整并返回整数
4.使用/运算符:相当于调用divide函数
5.使用//运算符:相当于调用floor_divide函数
示例代码如下:

import numpy as np 
a = np.array([2,6,5])
b = np.array([1,2,3])
print("divide function result:")
print(np.divide(a,b))
print(np.divide(b,a))
print("true_divide function result:")
print(np.true_divide(a,b))
print(np.true_divide(b,a))
print("floor_divide function resul
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值