对于行列式的性质,一共十个,都可以从三个基础的性质推出来。因此此篇博文将详细的从三个基础性质说起。
性质1
Det I=1
说明:这个很好理解,只要知道单位矩的结构。就知道单位阵的对角线上全是1,因此行列式也是1.
性质2
对于行列式来说,变换行的位置,行列式需要变换符号:
例如:
性质3a
矩阵的某一行可提取公因子到行列式外。这一点一定要区别于矩阵的提取公因子。
性质3b(加法性质)
性质4
若行列式中存在相等的行,那么行列式等于0
利用性质2,假设a1行和a2行相等,交换这两行,那么会有det A = - det A(change)
但是,事实上 det A= det A(change),所以det A=0.
性质5
某一行减去另外一行的K倍,行列式不改变。
证:以二阶行列式为例
又因为性质4,可以得到即使第二行减去了第一行l倍的行列式,仍然等于原来的行列式。
性质6
若有一行为0,则行列式为0.
很好理解,可以把0提取出来。
性质7
行列式的值,等于其化简成上三角行列式的对角线的乘积。
这一点不太好用公式说明,但是我还是用一个简单的图例来说明,主要的思想是:
step1:运用初等变换(性质5)来将上三角行列式变成只含有对角线的是的行列式
step2:运用性质3a,可以将对角线上的公因子提取出来,这样一来,就变成了对角线上的常数项与单位阵的相乘。
性质8
(1)若det A =0,那么矩阵A是奇异的(singular)
(2)若det A≠0,那么矩阵啊是非奇异的,即可逆的
这一条性质的证明,可以参考上一篇博文对于行列式等于0和不等于0的计算。先说完性质9,我们可以再证明一下性质8.
性质9
d e t ( A ∗ B ) = d e t A ∗ d e t B det(A*B)=det A *det B det(A∗B)=detA∗detB
结合性质8,对于这个式子有
d e t ( A − 1 ∗ A