线性代数04 行列式的性质:举一反三,从三个到十个

本文详细介绍了线性代数中行列式的10个核心性质,包括单位阵的行列式、行变换的影响、提取公因子、行相等时行列式为0、行减法不变性、零行与行列式的关系、化简成上三角行列式、行列式与矩阵可逆性的关系、行列式乘法性质以及行列式与转置的关系。通过这些性质,深入理解行列式的计算和应用。
摘要由CSDN通过智能技术生成
对于行列式的性质,一共十个,都可以从三个基础的性质推出来。因此此篇博文将详细的从三个基础性质说起。

性质1

Det I=1

说明:这个很好理解,只要知道单位矩的结构。就知道单位阵的对角线上全是1,因此行列式也是1.


性质2

对于行列式来说,变换行的位置,行列式需要变换符号:
例如:
在这里插入图片描述


性质3a

矩阵的某一行可提取公因子到行列式外。这一点一定要区别于矩阵的提取公因子。
在这里插入图片描述

性质3b(加法性质)

在这里插入图片描述


性质4

若行列式中存在相等的行,那么行列式等于0

利用性质2,假设a1行和a2行相等,交换这两行,那么会有det A = - det A(change)
但是,事实上 det A= det A(change),所以det A=0.


性质5

某一行减去另外一行的K倍,行列式不改变。

证:以二阶行列式为例在这里插入图片描述
又因为性质4,可以得到即使第二行减去了第一行l倍的行列式,仍然等于原来的行列式。


性质6

若有一行为0,则行列式为0.
很好理解,可以把0提取出来。


性质7

行列式的值,等于其化简成上三角行列式的对角线的乘积。
这一点不太好用公式说明,但是我还是用一个简单的图例来说明,主要的思想是:
step1:运用初等变换(性质5)来将上三角行列式变成只含有对角线的是的行列式
step2:运用性质3a,可以将对角线上的公因子提取出来,这样一来,就变成了对角线上的常数项与单位阵的相乘。
在这里插入图片描述


性质8

(1)若det A =0,那么矩阵A是奇异的(singular)
(2)若det A≠0,那么矩阵啊是非奇异的,即可逆的

这一条性质的证明,可以参考上一篇博文对于行列式等于0和不等于0的计算。先说完性质9,我们可以再证明一下性质8.


性质9

d e t ( A ∗ B ) = d e t A ∗ d e t B det(A*B)=det A *det B detAB=detAdetB

结合性质8,对于这个式子有
d e t ( A − 1 ∗ A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值