【线性代数公开课MIT Linear Algebra】 第二十三课 微分方程与exp(At)

这篇博客探讨了一阶常系数微分方程与线性代数的关系,强调了解的指数形式与矩阵A的特征值、特征向量的关联。通过特征值分析,解释了系统稳定性条件,并介绍了泰勒级数展开理解eAt的矩阵形式,为解耦和求解微分方程提供理论基础。
摘要由CSDN通过智能技术生成

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~

一阶常系数微分方程


Au= dudt

将一阶常系数微分方程转换为线性代数问题的关键在于常系数微分方程的解一定是指数形式的。那么我们的需要求解的东西就是指数的系数和指数的幂,而这可以转换为线性代数问题。

解的指数形式通常是自然常数 e 的指数(猜测是因为时域信号可以转到频域,傅里叶变换,这方面学识浅薄)
这里写图片描述
这个形式很容易让我们联想到之前对于矩阵 A 的幂的求解,这里看一个例子:
这里写图片描述
这里问题被转换为了求解 Au= dudt

特征值与特征向量

先找 A 的特征值和特征向量
求解特征值
两个小技巧:

  • 行列式determinant为特征值的积
  • 矩阵的迹trace为特征值的和

当然可以直接求解determinant=0得到特征值:
这里写图片描述
由于老师直接剧透 e 的幂系数中为矩阵 A 的特征值,那么对于特征值-3来说,随着t的增加,最终这一项为0;而对于特征值0来说,随着t增加,最终这一项为某一个确定值(解会收敛);举一反三:对于特征值大于0,随着t增加,解发散。

求解特征向量
两个小技巧:

  • 对于特征值为0,特征向量即为null space,free variable自由变量置1很容易求得
  • 对于另一个特征值-3,利用 AλI 特征向量不变,也可以转换为求解null space

    这里写图片描述

    解的形式

    这里写图片描述
    解会是上面这样的形式,证明:
    带入之前的公式 dudt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值