集成学习 Task 7

   在所有集成学习方法中,最直观的是多数投票。因为其目的是输出基础学习者的预测中最受欢迎(或最受欢迎)的预测。多数投票是最简单的集成学习技术,它允许多个基本学习器的预测相结合。与选举的工作方式类似,该算法假定每个基础学习器都是投票者,每个类别都是竞争者。为了选出竞争者为获胜者,该算法会考虑投票**。将多种预测与投票结合起来的主要方法有两种:一种是硬投票,另一种是软投票。**

投票法的思路

投票法是集成学习中常用的技巧,可以帮助我们提高模型的泛化能力,减少模型的错误率。举个例子,在航空航天领域,每个零件发出的电信号都对航空器的成功发射起到重要作用。如果我们有一个二进制形式的信号:

11101100100111001011011011011

在传输过程中第二位发生了翻转

10101100100111001011011011011

这导致的结果可能是致命的。一个常用的纠错方法是重复多次发送数据,并以少数服从多数的方法确定正确的传输数据。一般情况下,错误总是发生在局部,因此融合多个数据是降低误差的一个好方法,这就是投票法的基本思路。

对于回归模型来说,投票法最终的预测结果是多个其他回归模型预测结果的平均值。

对于分类模型,硬投票法的预测结果是多个模型预测结果中出现次数最多的类别,软投票对各类预测结果的概率进行求和,最终选取概率之和最大的类标签。

投票法的原理分析

投票法是一种遵循少数服从多数原则的集成学习模型,通过多个模型的集成降低方差,从而提高模型的鲁棒性。在理想情况下,投票法的预测效果应当优于任何一个基模型的预测效果。

投票法在回归模型与分类模型上均可使用:

回归投票法:预测结果是所有模型预测结果的平均值。
分类投票法:预测结果是所有模型种出现最多的预测结果。
  分类投票法又可以被划分为硬投票与软投票:

硬投票:预测结果是所有投票结果最多出现的类。
软投票:预测结果是所有投票结果中概率加和最大的类。

硬和软的区别:
硬:样本一定属于某一类别,硬生生地分进去。
软:根据样本属于各个类别的概率进行划分。比如样本x属于类别A的概率是65%,属于B的概率是55%,则样本x属于类别A。

下面我们使用一个例子说明硬投票:

对于某个样本:

模型 1 的预测结果是 类别 A

模型 2 的预测结果是 类别 B

模型 3 的预测结果是 类别 B

有2/3的模型预测结果是B,因此硬投票法的预测结果是B

同样的例子说明软投票:

对于某个样本:

模型 1 的预测结果是 类别 A 的概率为 99%

模型 2 的预测结果是 类别 A 的概率为 49%

模型 3 的预测结果是 类别 A 的概率为 49%

最终对于类别A的预测概率的平均是 (99 + 49 + 49) / 3 = 65.67%,因此软投票法的预测结果是A。

从这个例子我们可以看出,软投票法与硬投票法可以得出完全不同的结论。相对于硬投票,软投票法考虑到了预测概率这一额外的信息,因此可以得出比硬投票法更加准确的预测结果。

在投票法中,我们还需要考虑到不同的基模型可能产生的影响。理论上,基模型可以是任何已被训练好的模型。但在实际应用上,想要投票法产生较好的结果,需要满足两个条件:

基模型之间的效果不能差别过大。当某个基模型相对于其他基模型效果过差时,该模型很可能成为噪声。
基模型之间应该有较小的同质性。例如在基模型预测效果近似的情况下,基于树模型与线性模型的投票,往往优于两个树模型或两个线性模型。
  当投票合集中使用的模型能预测出清晰的类别标签时,适合使用硬投票。当投票集合中使用的模型能预测类别的概率时,适合使用软投票。软投票同样可以用于那些本身并不预测类成员概率的模型,只要他们可以输出类似于概率的预测分数值(例如支持向量机、k-最近邻和决策树)。

投票法的局限性在于,它对所有模型的处理是一样的,这意味着所有模型对预测的贡献是一样的。如果一些模型在某些情况下很好,而在其他情况下很差,这是使用投票法时需要考虑到的一个问题。

投票法的案例分析(基于sklearn,介绍pipe管道的使用以及voting的使用)

Sklearn中提供了 VotingRegressor 与 VotingClassifier 两个投票方法。   这两种模型的操作方式相同,并采用相同的参数。使用模型需要提供一个模型列表,列表中每个模型采用Tuple的结构表示,第一个元素代表名称,第二个元素代表模型,需要保证每个模型必须拥有唯一的名称。

在这里插入图片描述

在Matlab中,可以使用集成学习工具箱来实现集成学习集成学习是通过将多个个体学习器的预测结果进行组合,从而获得更好的预测性能的一种机器学习方法。集成学习方法包括Boosting、Bagging和随机森林。 对于Boosting方法,它的工作机制是通过迭代训练一系列的基学习器,在每一轮迭代中根据前一轮基学习器的表现对训练样本的分布进行调整,使得先前做错的样本得到更多关注,从而最终将多个基学习器进行加权结合。 Bagging方法则是基于自助采样法,通过多次随机有放回地从原始训练集中抽取样本构建多个训练集,然后在每个训练集上训练一个基学习器,最后将这些基学习器进行结合。 而随机森林是在Bagging的基础上进一步引入了随机属性选择的方法。具体来说,在决策树的构建过程中,随机森林会在每个节点从一个随机选择的子集中选择最优属性进行划分。 综上所述,Matlab中的集成学习工具箱提供了多种集成学习方法的实现,包括Boosting、Bagging和随机森林,可以根据具体需求选择合适的方法来进行集成学习的建模和预测。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [MATLAB如何搭建集成学习分类器](https://blog.csdn.net/weixin_43249038/article/details/120467746)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [matlab 集成学习,集成学习](https://blog.csdn.net/weixin_30290131/article/details/115960538)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值