集成学习 task10 前向分步算法与梯度提升决策树

本文介绍了前向分步算法作为集成学习的基础框架,用于解决加法模型的优化问题。Adaboost作为该框架的一个特例,通过迭代优化基本分类器权重和参数。在回归问题中,梯度提升决策树(GBDT)采用残差学习,以决策树为基函数,通过优化每个树的残差来逐步提升预测性能。
摘要由CSDN通过智能技术生成
  1. 前向分步算法
    在这里插入图片描述

回看Adaboost的算法内容,我们需要通过计算M个基本分类器,每个分类器的错误率、样本权重以及模型权重。我们可以认为:Adaboost每次学习单一分类器以及单一分类器的参数(权重)。接下来,我们抽象出Adaboost算法的整体框架逻辑,构建集成学习的一个非常重要的框架----前向分步算法,有了这个框架,我们不仅可以解决分类问题,也可以解决回归问题。
(1) 加法模型:
在Adaboost模型中,我们把每个基本分类器合成一个复杂分类器的方法是每个基本分类器的加权和,即: 𝑓(𝑥)=∑𝑀𝑚=1𝛽𝑚𝑏(𝑥;𝛾𝑚) ,其中, 𝑏(𝑥;𝛾𝑚) 为即基本分类器, 𝛾𝑚 为基本分类器的参数, 𝛽𝑚 为基本分类器的权重,显然这与第二章所学的加法模型。为什么这么说呢?大家把 𝑏(𝑥;𝛾𝑚) 看成是即函数即可。
在给定训练数据以及损失函数 𝐿(𝑦,𝑓(𝑥)) 的条件下,学习加法模型 𝑓(𝑥) 就是:
在这里插入图片描述
通常这是一个复杂的优化问题,很难通过简单的凸优化的相关知识进行解决。前向分步算法可以用来求解这种方式的问题,它的基本思路是:因为学习的是加法模型,如果从前向后,每一步只优化一个基函数及其系数,逐步逼近目标函数,那么就可以降低优化的复杂度。具体而言,每一步只需要优化:
在这里插入图片描述
2) 前向分步算法:
在这里插入图片描述
在这里插入图片描述
这样,前向分步算法将同时求解从m=1到M的所有参数 𝛽𝑚 , 𝛾𝑚 的优化问题简化为逐次求解各个 𝛽𝑚 , 𝛾𝑚 的问题。
(3) 前向分步算法与Adaboost的关系:
由于这里不是我们的重点,我们主要阐述这里的结论,不做相关证明,具体的证明见李航老师的《统计学习方法》第八章的3.2节。Adaboost算法是前向分步算法的特例,Adaboost算法是由基本分类器组成的加法模型,损失函数为指数损失函数。

  1. 梯度提升决策树(GBDT)
    (1) 基于残差学习的提升树算法:
    在前面的学习过程中,我们一直讨论的都是分类树,比如Adaboost算法,并没有涉及回归的例子。在上一小节我们提到了一个加法模型+前向分步算法的框架,那能否使用这个框架解决回归的例子呢?答案是肯定的。接下来我们来探讨下如何使用加法模型+前向分步算法的框架实现回归问题。
    在使用加法模型+前向分步算法的框架解决问题之前,我们需要首先确定框架内使用的基函数是什么,在这里我们使用决策树分类器。前面第二章我们已经学过了回归树的基本原理,树算法最重要是寻找最佳的划分点,分类树用纯度来判断最佳划分点使用信息增益(ID3算法),信息增益比(C4.5算法),基尼系数(CART分类树)。但是在回归树中的样本标签是连续数值,可划分点包含了所有特征的所有可取的值。所以再使用熵之类的指标不再合适,取而代之的是平方误差,它能很好的评判拟合程度。基函数确定了以后,我们需要确定每次提升的标准是什么。回想Adaboost算法,在Adaboost算法内使用了分类错误率修正样本权重以及计算每个基本分类器的权重,那回归问题没有分类错误率可言,也就没办法在这里的回归问题使用了,因此我们需要另辟蹊径。模仿分类错误率,我们用每个样本的残差表示每次使用基函数预测时没有解决的那部分问题。因此,我们可以得出如下算法:
    在这里插入图片描述
    (2) 梯度提升决策树算法(GBDT):
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值