说明:加粗为矩阵或者向量
常数项
m*a = (G*M*m) / r^2; 可知a = (G*M) / r^2;
a = -(G*M*r) / r^3 (负号代表加速度a指向地心)
G(引力常数) = 6.67259*e^-11( m^3*kg^-1*s^-2)
GM = 398600.4405 ($km^3$*$s^-2$)
六个轨道根数:a(半长轴), e(扁率), M(虚拟的平近点角), i(轨道倾角), Omaga(升交点赤经), ebuxiu(近地点辐角)
A称为Runge-Lenz矢量或者Laplace矢量
真近点角v是A和位置矢量r的夹角
半通径p=h^2/GM=a*(1-e^2)
平面运动
r×dr = h (const)
h:单位质量角动量或者特殊角动量
l: 角动量
l = m*h (m 卫星质量)
dA = 0.5*| r×dr*dt| = 0.5*|h|*dt (dA:卫星向径扫过的面积, dt:时间间隔)(h是常量, 面积相同)
h: 面积速度
轨道形状
h×dr = -GM*(r / r) - A ( -A 为积分出来的常数,由初始位置和速度决定。成为Laplace矢量或者Runge-Lenz矢量, h×dr与r / r垂直于角动量)
(h×dr)*r = -GM*(r / r)*r - A*r
r = p / (1 + e*cos(v)) (将卫星距离r 与 卫星矢量于参考方向A夹角v联系在一起), 其中p = h^2 / GM; e = A / GM
真近角点v作为A和r夹角
r_min = p / (1+e)
r_max = p/ (1 -e) (0<=e <1) 或者 r_max = inf (e>=1)
a(半长轴) = 0.5*(r_min + r_max) = p / (1-e^2)
能量积分
v^2 = GM*( 2 / r - 1 / a ) (活力公式, 能量积分, 表示轨道上任一点的动能与势能之和为常数. v 是相对速度)
当r=a时候 v_circ = sqrt(GM / a)
T_circ = 2*pi / v_circ = 2*pi * sqrt(a^3 / GM)
开普勒方程
x = r*cos(v) = a*(cos(E) - e)
y = r*sin(v) = a*sqrt(1-e^2)*sin(E)
x,y 表示卫星在轨道平面上相对于地心位置
E: 偏近角点
h: 面积速度
h = a^2 * sqrt(1-e^2)*dE* (1 - e*cos(E))
h = sqrt( GM*a*(1 - e^2) )
由以上两个公式可知:(1 - e*cos(E))*dE = n (式1)
引入平均角速度n = sqrt( GM / a^3) 从时间tp为近地点, 此时E = 0
对式1积分可知:E(t) - e*sin(E(t)) = n*(t - tp) (式2)
引入M = n*(t - tp) 称为平近点角,一圈内变化360度
引入参考历元t0处值代替tp,任意时刻平近点角:
M = M0 + n*(t - t0)
T = 2*pi / n = 2*pi * sqrt(a^3 / GM)
T^2 / a^3 = 4*pi^2 / GM
开普勒方程求解
f(E) = E - e*sin(E) - M
E(i+1) = E(i) - f(E(i)) / diff(f(E(i))); 牛顿法求解
E(0)=M (小偏心率0<e<0.8); E(0) = pi (大偏心率0.8<e<1);
空间轨道
指向近地点矢量P = A/|A|; 与P垂直的矢量Q(相应的真近点角v=90度)
W = h / h; 由(P, Q, W)卫星轨道坐标系
h = r×dr = (y*dz - z*dy; z*dx - x*dz; x*dy - y*dx)
勒让德多项式
P1(X) = 1; P2(x) = x;
(n+1)Pn+1(x) = (2n+1)x*Pn(x) - n*Pn-1(x)
地球磁场指数
F10.7: 太阳分米辐射流与太阳极紫外辐射有关,因此引入10.7cm辐射指数F10.7,表示太阳紫外线效应。
Kp: 3h地球磁场指数,描述地球磁场3h的变化。由地球维度48~63的12个观测站K指数获得,数值范围在[0, 9]整数。
ap: 3h行星振幅指数。
星固系转换到地固系或者惯性系
星固系:(R, T, N)(r,a,c)
地固系:(x,y,z)
径向:Radial
切向:Tangential direction
法向:Normal orientation
求出地固系(惯性系)下:ex,ey,ez
(x,y,z) = ex*R+ey*T+ez*N
(x,y,z) = R*ex+T*ey+N*ez
保守力和非保守力
保守力:地球中心引力,地球非球形引力,日月及N体引力,地球固体潮汐,海洋潮汐,广义相对论摄动。
(只与卫星位置有关系,与速度,表面特性无关;能够精确求出)
非保守力:大气阻力,光压模型,地球反照光压。
(不只与卫星位置有关系,还与速度,表面特性无关;很难数学模型描述,因此引入经验力模型)
a_srp = F(sat_pos, sun_pos, sat_area, sat_Cr);
a_ad = F(sat_pos, sat_vel, sat_area, sat_Cd);
Const = sat_area,**sat_Cr