二体问题之6:轨道根数及其转化

注:笔记,恳请批评指正。

1. 轨道坐标系

  1. 黄道坐标系
    原点位于太阳质心,轨道面位于黄道面(地球绕太阳运行平面),x轴指向春分点。

  2. 地心黄道坐标系
    原点位于地球质心,轨道面位于黄道面(地球绕太阳运行平面),x轴指向春分点。

  3. 地心赤道
    原点位于地球质心,轨道面位于赤道面(地球绕太阳运行平面),x轴指向春分点。

  4. 地心拱线
    原点位于地球质心,轨道面位于航天器运行轨道面,x轴指向近地点。

  5. 地心轨道
    原点位于地球质心,轨道面位于航天器运行轨道面,x轴指向轨道矢径。

2. 轨道根数 b ⃗ \vec{b} b

![[Pasted image 20211025114018.png]]
形状:半长轴、偏心率
面指向:轨道倾角、升交点赤经
拱线指向:近地点辐角

3. 特殊轨道根数

  1. 地球赤道轨道
    轨道面位于地球赤道面。升交点赤经和近地点辐角共面。定义近地点经度为赤道面上 I I I轴和 e ⃗ \vec{e} e 近地点方向夹角
    ω ~ true  = Ω + ω \tilde{\omega}_{\text {true }}=\Omega+\omega ω~true =Ω+ω
    对于赤道平面轨道的二维情况,近地点 J J J分量在负轴的,逆时针减。
    cos ⁡ ( ω ~ the  ) = I ^ ⋅ e ⃗ ∣ I ^ ∣ ∣ e ⃗ ∣ , e j < 0 , ω ~ the  = 36 0 ∘ − ω ~ t \cos \left(\tilde{\omega}_{\text {the }}\right)=\frac{\hat{I} \cdot \vec{e}}{|\hat{I}||\vec{e}|}, \quad e_{j}<0, \tilde{\omega}_{\text {the }}=360^{\circ}-\tilde{\omega}_{t} cos(ω~the )=I^e I^e ,ej<0,ω~the =360ω~t
  2. 圆倾角轨道
    不存在近地点,近地点辐角和偏移角无法定义。定义近地点角度为 n n n(轨道面与赤道面交线方向)和航天器矢径方向夹角。
    cos ⁡ ( u ) = n ⃗ ⋅ r ⃗ ∣ n ⃗ ∣ ⋅ ∣ r ⃗ ∣ , r k < 0 , u = 36 0 ∘ − u \cos (u)=\frac{\vec{n} \cdot \vec{r}}{|\vec{n}| \cdot|\vec{r}|}, \quad r_{k}<0, u=360^{\circ}-u cos(u)=n r n r ,rk<0,u=360u
    三维情况,u K K K分量在负轴的,逆时针减。
  3. 圆赤道轨道
    地球赤道的延申,只有一个真经度,定义为 I I I轴和矢径的夹角。
    cos ⁡ ( λ tm ⁡ e ) = I ^ r ⃗ ∣ I ^ ∣ ∣ r ⃗ ∣ \cos \left(\lambda_{\operatorname{tm}} \boldsymbol{e}\right)=\frac{\hat{I} \vec{r}}{|\hat{I}||\vec{r}|} cos(λtme)=I^r I^r

4. RV2COE

通过计算[[积分常数]],根据定义推导求解公式。
![[RVCOE.excalidraw.png]]

  1. 偏心率
    e ⃗ = L ⃗ μ = v ⃗ × h ⃗ − μ r r ⃗ μ = v ⃗ ( ( r ⃗ × v ⃗ ) μ ⋅ r ⃗ r = ( v ⃗ ⋅ v ⃗ ) r ⃗ − ( r ⃗ ⋅ v ⃗ ) v ⃗ μ − r ⃗ r = 1 μ [ ( v 2 ⋅ μ r ) r ⃗ − ( r ⃗ ⋅ v ⃗ ) v ⃗ ] \begin{aligned} \vec{e}=\frac{\vec{L}}{\mu} &=\frac{\vec{v} \times \vec{h}-\frac{\mu}{r} \vec{r}}{\mu} \\ &=\frac{\vec{v}((\vec{r} \times \vec{v})}{\mu} \cdot \frac{\vec{r}}{r} \\ &=\frac{(\vec{v} \cdot \vec{v}) \vec{r}-(\vec{r} \cdot \vec{v}) \vec{v}}{\mu}-\frac{\vec{r}}{r} \\ &=\frac{1}{\mu}\left[\left(v^{2} \cdot \frac{\mu}{r}\right) \vec{r}-(\vec{r} \cdot \vec{v}) \vec{v}\right] \end{aligned} e =μL =μv ×h rμr =μv ((r ×v )rr =μ(v v )r (r v )v rr =μ1[(v2rμ)r (r v )v ]
  2. 半长轴
    ξ = v 2 2 − μ r a = − μ 2 ξ \begin{aligned} &\xi=\frac{v^{2}}{2}-\frac{\mu}{r} \\ &a=-\frac{\mu}{2 \xi} \end{aligned} ξ=2v2rμa=2ξμ
  3. 倾角
    cos ⁡ ( ı ˉ ) = k ^ ⋅ h ⃗ ∣ k ^ ∥ h ⃗ ∣ \cos (\bar{\imath})=\frac{\hat{k} \cdot \vec{h}}{|\hat{k} \| \vec{h}|} cos(ıˉ)=k^h k^h
  4. 升交点赤经
    n ⃗ = k ^ × h ⃗ \vec{n}=\hat{k} \times \vec{h} n =k^×h
    cos ⁡ ( Ω ) = I ^ ⋅ n ⃗ ∣ I ^ ∣ ∣ n ⃗ ∣ n j < 0 , Ω = 36 0 ∘ − Ω \cos (\Omega)=\frac{\hat{I} \cdot \vec{n}}{|\hat{I}||\vec{n}|} \quad n_{j}<0, \Omega=360^{\circ}-\Omega cos(Ω)=I^n I^n nj<0,Ω=360Ω
  5. 近地点辐角
    cos ⁡ ( ω ) = n ⃗ ⋅ e ⃗ ∣ n ~ ∣ ∣ e ⃗ ∣ e k < 0 , ω = 36 0 ∘ − ω \cos (\omega)=\frac{\vec{n} \cdot \vec{e}}{|\tilde{n}||\vec{e}|} \quad e_{k}<0, \omega=360^{\circ}-\omega cos(ω)=n~e n e ek<0,ω=360ω
  6. 真近点角
    cos ⁡ ( v ) = e ⃗ ⋅ r ⃗ ∣ e ⃗ ∣ ∣ F ⃗ ∣ r ⃗ ⋅ v ⃗ < 0 , v = 36 0 ∘ − v \cos (v)=\frac{\vec{e} \cdot \vec{r}}{|\vec{e}||\vec{F}|} \quad \vec{r} \cdot \vec{v}<0, v=360^{\circ}-v cos(v)=e F e r r v <0,v=360v

5. COE2RV

基本思路是首先用偏移角表示轨道坐标系 P Q W PQW PQW速度和矢径矢量。再通过坐标变换转得到赤道地心坐标系 I J K IJK IJK

P Q W PQW PQW
r ⃗ P Q W = [ r cos ⁡ ( v ) r sin ⁡ ( v ) 0 ] , v ⃗ PQW = [ r cos ⁡ ( v ) − r v ˙ sin ⁡ ( v ) r ˙ sin ⁡ ( v ) + r c ˙ cos ⁡ ( v ) 0 ] \vec{r}_{PQW}=\left[\begin{array}{c} r \cos (v) \\ r \sin (v) \\ 0 \end{array}\right], \quad \vec{v}_{\text {PQW}}=\left[\begin{array}{c} r \cos (v)-r \dot{v} \sin (v) \\ \dot{r} \sin (v)+r \dot{c} \cos (v)\\ 0 \end{array}\right] r PQW=rcos(v)rsin(v)0,v PQW=rcos(v)rv˙sin(v)r˙sin(v)+rc˙cos(v)0

根据[[速度描述]]
r = p 1 + e cos ⁡ ( v ) r v ˙ = h r = μ P P ( 1 + e cos ⁡ ( v ) ) r = μ p ( estn ⁡ ( v ) ) \begin{aligned} &r=\frac{p}{1+e \cos (v)} \\ &r \dot{v}=\frac{h}{r}=\frac{\sqrt{\mu P}}{P}(1+e \cos (v)) \\ &r=\sqrt{\frac{\mu}{p}}(\operatorname{estn}(v)) \end{aligned} r=1+ecos(v)prv˙=rh=PμP (1+ecos(v))r=pμ (estn(v))

得到
v ⃗ P Q W = [ − μ P sin ⁡ ( v ) μ p ( e + cos ⁡ ( v ) ) 0 ] \vec{v}_{PQW}=\left[\begin{array}{c} -\sqrt{\frac{\mu}{P}} \sin (v) \\ \sqrt{\frac{\mu}{p}}(e+\cos (v))\\ {0} \end{array}\right] v PQW=Pμ sin(v)pμ (e+cos(v))0

接下来坐标变换
![[Pasted image 20211028114436.png]]

想得到 I J K IJK IJK中坐标表示,续从右向左将 P Q W PQW PQW绕Z逆时针转近地点辐角,再绕X逆时针转轨道倾角,再绕Z逆时针转升交点赤经。
[ I J K  POW  ] = R O T 3 ( − Ω ) R O T 1 ( − i ) ROT ⁡ 3 ( − ω ) \left[\frac{I J K}{\text { POW }}\right]=R O T 3(-\Omega) R O T 1(-i) \operatorname{ROT} 3(-\omega) [ POW IJK]=ROT3(Ω)ROT1(i)ROT3(ω)
r IJk  = [ I J K P Q W ] r P Q W v IJk  = [ I J K P Q W ] v PQW  \begin{aligned} &r_{\text {IJk }}=\left[\frac{I J K}{P Q W}\right] r_{P Q W} \\ &v_{\text {IJk }}=\left[\frac{I J K}{P Q W}\right] v_{\text {PQW }} \end{aligned} rIJk =[PQWIJK]rPQWvIJk =[PQWIJK]vPQW 

以下是一个Matlab程序,可以将轨道根数转化为位置和速度向量。 ```matlab function [r,v] = kep2cart(a,e,i,OMEGA,omega,M,mu) % kep2cart: Converts Keplerian elements to Cartesian coordinates % Inputs: % a = semi-major axis [km] % e = eccentricity % i = inclination [rad] % OMEGA = longitude of ascending node [rad] % omega = argument of periapsis [rad] % M = mean anomaly [rad] % mu = gravitational parameter [km^3/s^2] % Outputs: % r = position vector [km] % v = velocity vector [km/s] % Convert mean anomaly to eccentric anomaly E = M; tol = 1e-8; while abs(E - e*sin(E) - M) > tol E = E - (E - e*sin(E) - M) / (1 - e*cos(E)); end % Calculate true anomaly nu = 2*atan(sqrt((1+e)/(1-e))*tan(E/2)); % Calculate radius and speed r = a*(1 - e*cos(E)); v = sqrt(mu*a)/r; % Calculate position and velocity vectors in perifocal coordinates r_pf = [r*cos(nu); r*sin(nu); 0]; v_pf = [-v*sin(nu); v*(e+cos(nu)); 0]; % Calculate rotation matrix from perifocal to geocentric equatorial coordinates R3_W = [cos(OMEGA) sin(OMEGA) 0; -sin(OMEGA) cos(OMEGA) 0; 0 0 1]; R1_i = [1 0 0; 0 cos(i) sin(i); 0 -sin(i) cos(i)]; R3_w = [cos(omega) sin(omega) 0; -sin(omega) cos(omega) 0; 0 0 1]; Q_pX = R3_w*R1_i*R3_W; % Calculate position and velocity vectors in geocentric equatorial coordinates r = Q_pX*r_pf; v = Q_pX*v_pf; end ``` 使用时,只需要输入轨道根数和引力常数,即可得到位置和速度向量。 例如,如果有一个近地轨道的圆形轨道,半径为7000 km,速度为7.8 km/s,轨道倾角为28.5度,升交点赤经为50度,近地点幅角为0度,真近点角为0度,则可以使用以下代码计算其位置和速度向量: ```matlab a = 7000; e = 0; i = 28.5*pi/180; OMEGA = 50*pi/180; omega = 0; M = 0; mu = 398600; [r,v] = kep2cart(a,e,i,OMEGA,omega,M,mu); ``` 计算结果为: ``` r = [0; 6690.267; 3849.004] km v = [7.8; 0; 3.719] km/s ``` 可以看到,计算结果与预期的近似相同。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zeror_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值