基于matlab的一元线性回归原理

一、一元线性回归原理

1.1、数学模型

一元线性回归分析是在排除其他影响因素,分析某一个因素(自变量:X)是如何影响另外一个事物(因变量:Y)的过程,所进行的分析是比较理想化的。对于一元线性回归来说,可以看成Y的值是随着X的值变化,每一个实际的X都会有一个实际的Y值,我们叫Y实际,那么我们就是要求出一条直线,每一个实际的X都会有一个直线预测的Y值,我们叫做Y预测,回归线使得每个Y的实际值与预测值之差的平方和最小,即达到一元线性回归的最终结果。

一般的,一元线性回归模型可由下表示:
Y = β 0 + β 1 × X + ϵ Y=\beta_0 +\beta_1\times X+\epsilon Y=β0+β1×X+ϵ
固定的 β 0 \beta_0 β0 β 1 \beta_1 β1称为回归系数,自变量X也成为回归变量, Y = β 0 + β 1 × X + ϵ Y=\beta_0 +\beta_1\times X+\epsilon Y=β0+β1×X+ϵ,称为Y对X的回归直线方程,且 ϵ \epsilon ϵ 的均值 E ( ϵ ) = 0 E(\epsilon)=0 E(ϵ)=0,所以模型简化为 Y = β 0 + β 1 × X Y=\beta_0 +\beta_1\times X Y=β0+β1×X

对于实际问题,要建立回归方程,首先确定能否建立线性回归模型,其次确定如何对模型中未知参数 β 0 \beta_0 β0 β 1 \beta_1 β1进行估计。所以首先对总体进行独立观测,在坐标系中画出Y与X的散点图,根据图判断Y与X直线关系是否符合一元线性回归模型。最后利用最小二乘法可以得到回归模型参数 β 0 \beta_0 β0 β 1 \beta_1 β1的最小二乘估计,估计公式为:
{ β 0 = y ˉ − x ˉ β 1 β 1 = L x y L x x \begin{cases}\beta_{0}=\bar{y}-\bar{x} \beta_{1} \\\beta_{1}=\frac{L_{x y}}{L_{x x}}\end{cases} {β0=yˉxˉβ1β1=LxxLxy
其中: x ˉ = 1 n ∑ i = 1 n X i , y ˉ = 1 n ∑ i = 1 n y i \bar{x}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i} xˉ=n1i=1nXi,yˉ=n1i=1nyi L x x = ∑ i = 1 n ( X i − X ˉ ) 2 , L x y = ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) L_{x x}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}, L_{x y}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) Lxx=i=1n(XiXˉ)2,Lxy=i=1n(xixˉ)(yiyˉ)

于是我们建立公式模型: y = β 0 + β 1 x y=\beta_{0}+\beta_{1} x y=β0+β1x

接下来我们可以通过对一元线性回归分析总结为三点

  1. 利用样本观测值对回归系数 β 0 \beta_0 β0 β 1 \beta_1 β1做点估计
  2. 对方程的线性关系做显著校验
  3. 在X= X 0 X_0 X0处对Y做预测等

1.2、案例分析

分析总能耗与面积的关系,首先导入散点图,如下:

第一步:画出面积和总能耗之间的散点图,如下:

[Data,str]=xlsread('C:\Users\86188\Desktop\仿真数据\北京参数一百组新.xlsx','sheet1','A1:R101');%得到表格中所有数据
[Row,Col]=size(Data);                    % 得到数据的行和列宽
NewData=zeros(Row,2);                    % 建立两列行相等的数组
NewData(:,1)=Data(:,factor);             % 保存因素数据
NewData(:,2)=Data(:,Col);                % 保存自变量数据

subplot(311);                            % 分图1,肉眼看线性关系
plot(NewData(:,1)',NewData(:,2)','k+');  % 得出面积与总能耗之间的散点图,通过散点图可以明确发现存在线性关系
axis([0,inf,0,inf]);xlabel('面积');ylabel('总能耗');title('总能耗与面积散点图');legend('真实值');

可以观测处面积与总能耗之间存在线性关系,但是实际上不用标准的一元线性模型,而使用 Y = β 1 × X Y=\beta_1\times X Y=β1×X,观测Y与X的具体关系,不加截距的方式。

第二步:求出面积与总能耗之间最大与最小斜率。

slop=zeros(Row,1);                        % 建立一个斜率数组
for i=1:Row
    slop(i)=NewData(i,2)/NewData(i,1);    % 得到每个数据对应的斜率
end
[MaxNumber,MaxIndex] = max(slop);         % 得到最大斜率和下标
[MinNumber,MinIndex] = min(slop);         % 得到最小效率和下标

第三步:求出每个斜率对应的误差值

最终得到在 K=63.88的时候可以得到最小误差RSS=5296700

SlopNumber = (MaxNumber-MinNumber)/0.01;  % 得到以0.01为精度的斜率个数
Loss=zeros(SlopNumber,1);                 % 根据最大斜率和最小效率建立指定长度的损失数据       
count = 1;
for PreSlop = MinNumber:0.01:(MaxNumber-0.01)    % 斜率以0.01的增量去计算损失函数
    for i=1:Row
        Loss(count) = Loss(count)+(NewData(i,2)-PreSlop*NewData(i,1))^2/(2*100);
    end
    count=count+1;
end
Number=1:SlopNumber;                     % 得到损失函数列向量数量
subplot(312);                            % 分图2:看损失函数的最小值
plot(Number,Loss');ylabel('损失值');title('损失函数图');legend('损失函数');

第四步:得到最佳斜率并用模型进行预测总能耗

[MinLoss,MinLossindex] = min(Loss)      % 得到损失函数最小值及对应的下标
PreSlop = zeros(2,Row);                  % 建立预测曲线存取矩阵
for i=1:Row                              % 预测矩阵基于给定的数据,计算y=k*x的关系
    PreSlop(2,i)= (MinLossindex*0.01+MinNumber)*NewData(i,1);
    PreSlop(1,i)= NewData(i,1);
end
subplot(313);                            % 分图3:看实际数据与线性回归的关系
plot(NewData(:,1)',NewData(:,2)','k+',PreSlop(1,:)',PreSlop(2,:),'r');% 得出面积与总能耗之间的散点图,通过散点图可以明确发现存在线性关系
axis([0,inf,0,inf]);xlabel('面积');ylabel('总能耗');title('总能耗与面积的线性关系');
legend('真实值','预测值');grid on;hold on;

第五步:得到模型函数关系
总 能 耗 = 63.88 × 面 积 总能耗=63.88 \times 面积 =63.88×

参考文献:

1.数学建模与数学试验
2.多元线性回归MATLAB实现

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiaoxiaodawei

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值