浅谈线性方程组的几何意义

本文探讨了考研数学中如何通过三元一次方程描述空间平面,利用系数矩阵和秩来研究平面位置关系,以及通过增广矩阵分析线性方程组的解的情况,包括平面相交、平行与重合的不同几何意义和代数表达式。
摘要由CSDN通过智能技术生成


前言

此篇所论述的仅仅是针对于考研数学大纲范围。

通过高数的知识,我们知道,任何一个空间平面,都是由一个三元一次方程决定的。其中,变量x,y,z的系数,决定了平面的法向量方向。

为了更好的研究平面,我们将方程组的系数构成下图左侧的系数矩阵。

那么研究系数矩阵的秩,就能研究出3个法向量的位置关系。

然后,我们将系数和等号右面的常数项放在一起,组成增广矩阵。如下


一、文字描述

设线性方程组\begin{cases}a_{1}x+b_{1}y+c_{1}z=d_{1}\\a_{2}x+b_{2}y+c_{2}z=d_{2}\\a_{3}x+b_{3}y+c_{3}z=d_{3}\end{cases}

A=\begin{bmatrix}a_{1}&b_{1}&c_{1}\\a_{2}&b_{2}&c_{2}\\a_{3}&b_{3}&c_{3}\end{bmatrix},\bar{A}=\begin{bmatrix}a_{1}&b_{1}&c_{1}&d_{1}\\a_{2}&b_{2}&c_{2}&d_{2}\\a_{3}&b_{3}&c_{3}&d_{3}\end{bmatrix}

\Pi _{i}表示第i张平面:a_{i}x+b_{i}y+c_{i}z=d_{i},\alpha _{i}表示第i张平面的法向量[a_{i},b_{i},c_{i}],即A的行向量,\beta _{i}表示[a_{i},b_{i},c_{i},d_{i}],即\bar{A}的行向量,i=1,2,3,于是可按不同情况列以下表格:

 表1:方程组有解情形

图形几何意义代数表达
三张平面交于一点r(A)=r(\bar{A})=3
三张平面相交于一条直线r(A)=r(\bar{A})=2,且\beta _{1},\beta _{2},\beta _{3}中任意两个向量都线性无关
两张平面重合,第三张平面与之相交r(A)=r(\bar{A})=2,且\beta _{1},\beta _{2},\beta _{3}中有两个向量线性相关
三张平面重合r(A)=r(\bar{A})=1

 表2:方程组无解情形

图形几何意义代数表达
三张平面两两相交,且交线互相平行r(A)=2,r(\bar{A})=3,且\alpha_{1},\alpha_{2},\alpha_{3}中任意两个向量都线性无关
两张平面平行,第三张平面与它们相交r(A)=2,r(\bar{A})=3,且\alpha_{1},\alpha_{2},\alpha_{3}中有两个向量都线性相关
三张平面相互平行但不重合r(A)=1,r(\bar{A})=2,且\beta _{1},\beta_{2},\beta_{3}中任意两个向量都线性无关
两张平面重合,第三张平面与它们平行但不重合r(A)=1,r(\bar{A})=2,且\beta _{1},\beta_{2},\beta_{3}中有两个向量都线性相关

  • 11
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值