线性代数之矩阵运算

关于此章重中之重并不是那些高深的定理、结论而是看似毫不起眼的“矩阵运算法则”,见前言。


前言

矩阵运算与我们日常实数运算不同,故一些运算法则略有罗列,如下:

关于矩阵与常数运算:

|kA|=k^{n}|A||kA|^{T}=kA^{T}|kA|^{-1}=\frac{1}{k}A^{-1}|kA|^{*}=k^{n-1}A^{*}

关于矩阵之间的加法:

|A+B|\neq|A|+|B|(A+B)^{-1}\neq A^{-1}+B^{-1}(A+B)^{*}\neq A^{*}+B^{*}(A+B)^{T}= A^{T}+B^{T}

关于矩阵之间的乘法:

|AB|=|A||B|(AB)^{T}=B^{T}A^{T}(AB)^{-1}=B^{-1}A^{-1}(AB)^{*}=B^{*}A^{*}

关于各类矩阵间的复合运算:

(A^{T})^{-1}=(A^{-1})^{T}(A^{*})^{-1}=(A^{-1})^{*}(A^{T})^{*}=(A^{*})^{T}|A^{-1}|=|A|^{-1}


提示:以下是本篇文章正文内容,下面案例可供参考

一、关于高阶矩阵A^n

1.A为方阵且r(A)=1

        则:A^{n}=[tr(A)]^{n-1}A

2.找规律

        (1):若A^{2}=kA,则A^{n}=k^{n-1}A

        (2):若A^{2}=kE,则A^{2n}=k^{n}EA^{2n+1}=k^{n}A

3.分解(A=B+C)

        (1):若A=B+C,BC=CB

                则:A^{n}=\sum_{k=0}^{n}C_{n}^{k}B^{n-k}C^{k}这里与高数中求高阶导数方法类似

        (2):再“(1)”的条件下,若BC=CB=O,则A^{n}=B^{n}+C^{n}

4.运用初等矩阵理解P_{1}^{m}AP_{2}^{n}

         若P_{1},P_{2}均为初等矩阵,m,n为正整数,则P_{1}^{m}AP_{2}^{n}表示对矩阵A作了与P_{1}相同的初等行变换,且重复m次;再对P_{1}^{m}A作了与P_{2}相同的初等列变换,且重复n次。

5.运用相似理论求

        (1):若A\sim B则存在可逆矩阵P,使得A=PBP^{-1},A^{n}=PB^{n}P^{-1}

        (2):若A\sim \Lambda则存在可逆矩阵P,使得A=P\Lambda P^{-1},A^{n}=P\Lambda ^{n}P^{-1}

二、关于伴随矩阵A^{*}

1.定义

        原矩阵内所有元素都替换成对应的代数余子式,再转置即为“伴随矩阵”.

2.公式

(1):AA^{*}=A^{*}A=|A|E

(2):|A^{*}|=|A|^{n-1}

(3):(A^{T})^{*}=(A^{*})^{T}

(4):(kA)^{*}=k^{n-1}A^{*}(-A)^{*}=(-1)^{n-1}A^{*}

(5):A^{-1}=\frac{1}{|A|}A^{*}

(6):A^{*}=|A|A^{-1}

(7):(A^{*})^{-1}=\frac{1}{|A|}A=(A^{-1})^{*}

(8):(A^{\ast})^{\ast}=|A|^{n-2}A

(9):|(A^{*})^{*}|=|A|^{(n-1)^{2}}

(10):(AB)^{*}=B^{*}A^{*}

3.关于伴随矩阵的秩【见下篇“矩阵的秩”】

三、关于逆矩阵A^{-1}

1.定义

        对于方阵A,B,若AB=E,则A,B互为逆矩阵,且A^{-1}=B,B^{-1}=A,AB=BA

        【注:任何一个可逆矩阵必可由若干个初等矩阵乘积得来】

2.求A^{-1}

        具体型:A^{-1}=\frac{1}{|A|}A^{*}、(初等行变换):[A|E]\rightarrow [E|A^{-1}]
        抽象型:

                (1):创造AB=E,则A^{-1}=B

                (2):创造A=BC,B,C均可逆,则A^{-1}=C^{-1}B^{-1}

四、初等矩阵

1.定义

        “初等变换”:(1):一个非零常数乘矩阵的某一行(列);

                            (2):互换矩阵中某两行(列)的位置;

                            (3):矩阵的某一行(列)的k倍加到另一行(列);

        “初等矩阵”:由单位矩阵经过一次初等变换得到的矩阵成为初等矩阵。

2.左行右列定理

        (1):矩阵A左乘初等矩阵P,得PA,相当于对A作了一次与P完全相同得初等行变换;

        (2):矩阵A右乘初等矩阵P,得AP,相当于对A作了一次与P完全相同得初等列变换;

五、矩阵方程

1、定义

        含有未知矩阵的方程成为矩阵方程;

2、化简

        "消公因式":即若CA=CB,且C可逆,则A=B

        "提取公因式":即CA+CB=C(A+B)

        "移项":即将已知表达式与位置表达式分别移至方程两边;

        "利用公式".

3、求解

【注:理解此处需具备"方程组&向量组"相关知识】

        (1):若AB,或AB可逆,则分别可得解为                                       ·                                ​​​​​​​        ​​​​​​​        ​​​​​​​X=A^{-1}B,X=BA^{-1},X=A^{-1}CB^{-1}

        (2):若A不可逆,如AX=B,则将XB按列分块,得A[\xi _{1},\xi _{2},...,\xi _{n}]=[\beta_{1}, \beta_{2},...,\beta_{n}],即A\xi _{i}=\beta _{i},i=1,2,...,n,求解上述线性方程组,得解\xi _{i},从而得X=[\xi _{1},\xi _{2},...,\xi _{n}]

        (3)【待定系数法】:若无法化成上述几种形式,则应该设未知矩阵为X=(x_{ij}),直接代入方程得到含未知量为x_{ij}的线性方程组,求得矩阵X的元素x_{ij},从而求得未知矩阵。


总结

线代基础之三“矩阵方程”,呈上。

  • 29
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值