线性代数之矩阵的秩

文章目录


前言

正值除夕之夜、新春之际。预祝大家身体健康、工作顺利、阖家幸福!


一、定义

        设Am\times n矩阵,A中最大的不为零的子式阶数成为矩阵的秩,记为r(A)。另:也可定义为:存在k阶子式不为零,而任意k+1阶子式全为零(如果有的话),则r(A)=k,且r(A_{m\times n})=n\Leftrightarrow |A|\neq 0\Leftrightarrow A可逆。

二、公式

1、0\leqslant r(A_{m\times n})\leqslant min(m,n)

2、r(kA)=r(A)(k\neq 0)(重要)

3、r(A)=r(PA)=r(AQ)=r(PAQ)(初等变换不改变矩阵的秩)

4、r(AB)\leqslant min(r(A),r(B))

5、r[\begin{matrix}A&0\\0&B\end{matrix}]=r(A)+r(B)

6、r(A)+r(B)\leqslant r[\begin{matrix}A&0\\C&B\end{matrix}]\leqslant r(A)+r(B)+r(C)

7、r(AB)\geqslant r(A)+r(B)-n重要)

8、r(A)=r(A^{T})=r(AA^{T})=r(A^{T}A)(非常重要)

9、r(A^{*})=\begin{cases}n, r(A)=n\\1,r(A)=n-1\\0,r(A)< n-1\end{cases}非常重要)

10、r(A+B)\leqslant r(A)+r(B)

11、关于方程组&向量组

        Ax=0的基础解系所含向量的个数s=n-r(A)(非常重要)

12、关于“特征值”

(1):若矩阵A相似于对角阵,则n_{i}=n-r(\lambda _{i}E-A)其中\lambda _{i}n_{i}重特征根。

(2):若矩阵A相似于对角阵,则r(A)等于非零特征值的个数,重根按重数记。

【注意】A^{2}-(k_{1}+k_{2})A+k_{1}k_{2}E=0,k_{1}\neq k_{2}\Rightarrow r(A-k_{1}E)+r(A-k_{2}E)=n

证明如下:

原式=(A-k_{1}E)(A-k_{2}E)=0\Rightarrow r(A-k_{1}E)+ r(A-k_{2}E)\leqslant n来自公式7

r(A-k_{1}E)+ r(A-k_{2}E)=r(k_{1}E-A)+ r(A-k_{2}E)来自公式2

r(k_{1}E-A)+ r(A-k_{2}E)\geqslant r(k_{1}E-k_{2}E)来自公式10

r(k_{1}E-k_{2}E)=r(E)=n

证毕!

总结

矩阵的秩基础知识及公式大抵如上所示,若有不足之处希望大佬不吝批评指正。例题所示后续会持续更新~

(可以点点收藏或关注避免走散哦!)

文章最后新年来临,祝福之意无以言表,但新年之快乐不止于“新”也在于“旧”。所以,祝愿大家四季轮回仍有旧人相伴,愿你我拨开眼前迷雾是坦荡前路,慕然回首也有一份心安!

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值