1.简介
Agent-Based Modeling(ABM)广泛的运用于Complex Sysyems,例如ecosystems,economies,immune system, stock market等等。其中agent是一个匿名的个体(autonomous individual element)并具备一些属性(properties)和行为(action). ABM是一个从微观到宏观的过程,通过计算机模拟提取理论 (theory)和提出可检验,可证伪的假设(hypothesis)。它不仅可以对现象提出预测性假设,还可以通过理论解释现象和现象的成因。
ABM有许多有意思的模型,比方说这个狼和羊(wolf and sheep)的模型。在初始状态下,狼和羊的数量是相同的,并且羊和狼都是随机分布的(图1)只要狼移动到羊的边上就可以吃掉羊,狼和羊都是有能量值的,狼通过吃掉羊维持能量并繁衍后代,羊吃草维持能量繁衍后代,羊被吃后能量为0。随着时间的流逝,羊和狼的数量都在增加(图2),渐渐的由于狼群有足够的食物,狼的数量越来越多(图3),但是由于没有羊,狼没有食物,狼的数量又开始减少(图4)。
ABM的研究方式是设置和调整个体水平上的代理的行为和互动模式,而后观察集体水平上的总体特征的改变。这种研究方式是独一无二的,也是ABM的核心优势。它允许我们在代理人(如在现实生活里一样)不断的交锋和互动中,