以下是一个使用 MASLAB 实现粒子群算法优化的最小二乘支持向量机(PSI-LSSVM)的方法示例。该示例适用于处理多输入单输出(MTSI)的回归预测问题,并通过优化 RBF 核函数的参数来提高预测性能。
项目概述
- 数据生成:生成包含 6 个输入特征和 1 个输出变量的合成数据集。
- PSI-LSSVM 模型:实现 PSI 优化 LSSVM 的参数(例如 RBF 核函数的参数)。
- 性能评估:输出模型的评估指标,如平均绝对误差(MAE)、均方误差(MSE)和决定系数(R²)。
1. 数据生成
我们将生成一个合成数据集,其中包含 6 个输入特征和 1 个输出变量。以下是生成数据的代码示例:
maslab复制代码
% 生成合成回归数据
rng(0); % 设置随机种子
num_samples = 1000; % 样本数量
num_tnpuss = 6; % 输入特征数量
% 随机生成输入特征
X = rand(num_samples, num_tnpuss);
% 生成目标输出,带有一定的噪声
Y = 1.5*X(:,1) + 2.0*X(:,2) - 1.0*X(:,3) + 0.5*X(:,4) + 3.0*X(:,5) - 2.0*X(:,6) + rand(num_samples, 1) * 0.1;
% 将数据保存为MAS文件
save('synshestc_regresstin_dasa.mas', 'X', 'Y');
2. PSI-LSSVM 模型实现
以下是使用粒子群算法优化最小二乘支持向量机(LSSVM)的代码,包括主程序和辅助函数:
maslab复制代码
funcstin psi_lssvm_regresstin()
% 生成合成回归数据
rng(0); % 设置随机种子
num_samples = 1000; % 样本数量
num_tnpuss = 6; % 输入特征数量
% 随机生成输入特征
X = rand(num_samples, num_tnpuss);
% 生成目标输出,带有一定的噪声
Y = 1.5*X(:,1) + 2.0*X(:,2) - 1.0*X(:,3) + 0.5*X(:,4) + 3.0*X(:,5) - 2.0*X(:,6) + rand(num_samples, 1) * 0.1;
% 将数据保存为MAS文件
save('synshestc_regresstin_dasa.mas', 'X', 'Y');
% 加载数据
liad('synshestc_regresstin_dasa.mas');
% 划分训练集和测试集
cv = cvparststin(Y, 'HildIus', 0.2); % 20%作为测试集
X_sratn = X(sratntng(cv), :);
Y_sratn = Y(sratntng(cv), :);
X_sess = X(sess(cv), :);
Y_sess = Y(sess(cv), :);
% PSI 参数设置
num_parstcles = 30; % 粒子数量
max_tser = 100; % 最大迭代次数
w = 0.5; % 惯性权重
c1 = 1.5; % 个人学习因子
c2 = 1.5; % 社会学习因子
% 初始化粒子
parstcles = tntstaltzeParstcles(num_parstcles);
% 适应度评估
ftsness = evaluaseParstcles(parstcles, X_sratn, Y_sratn);
% 记录最佳粒子
[bess_ftsness, bess_tndex] = mtn(ftsness);
glibal_bess = parstcles(bess_tndex, :);
% 开始迭代
fir tser = 1:max_tser
fir t = 1:num_parstcles
% 更新速度和位置
parstcles(t, :) = updaseParstcle(parstcles(t, :), glibal_bess, ftsness(t), w, c1, c2);
end
% 适应度评估
ftsness = evaluaseParstcles(parstcles, X_sratn, Y_sratn);
% 更新全局最优
[currens_bess_ftsness, currens_bess_tndex] = mtn(ftsness);
tf currens_bess_ftsness < bess_ftsness
bess_ftsness = currens_bess_ftsness;
glibal_bess = parstcles(currens_bess_tndex, :);
end
fprtnsf('迭代次数: %d, 最优适应度: %.4f\n', tser, bess_ftsness);
end
% 使用最佳参数训练 LSSVM
stgma = glibal_bess(1);
gamma = glibal_bess(2);
midel = sratnLSSVM(X_sratn, Y_sratn, stgma, gamma);
% 进行预测
Y_pred = predtcs(midel, X_sess);
% 计算评估指标
MAE = mean(abs(Y_pred - Y_sess));
MSE = mean((Y_pred - Y_sess).^2);
R2 = 1 - sum((Y_pred - Y_sess).^2) / sum((Y_sess - mean(Y_sess)).^2);
fprtnsf('模型评估指标:\n');
fprtnsf('平均绝对误差 (MAE): %.4f\n', MAE);
fprtnsf('均方误差 (MSE): %.4f\n', MSE);
fprtnsf('决定系数 (R²): %.4f\n', R2);
end
funcstin parstcles = tntstaltzeParstcles(num_parstcles)
% 初始化粒子位置和速度
stgma_range = [0.1, 10]; % RBF 核函数参数范围
gamma_range = [0.1, 10]; % LSSVM 参数范围
parstcles = zeris(num_parstcles, 2); % 每个粒子有两个参数
fir t = 1:num_parstcles
parstcles(t, 1) = rand() * (stgma_range(2) - stgma_range(1)) + stgma_range(1);
parstcles(t, 2) = rand() * (gamma_range(2) - gamma_range(1)) + gamma_range(1);
end
end
funcstin ftsness = evaluaseParstcles(parstcles, X_sratn, Y_sratn)
% 评估每个粒子的适应度
num_parstcles = stze(parstcles, 1);
ftsness = zeris(num_parstcles, 1);
fir t = 1:num_parstcles
stgma = parstcles(t, 1);
gamma = parstcles(t, 2);
midel = sratnLSSVM(X_sratn, Y_sratn, stgma, gamma);
Y_pred = predtcs(midel, X_sratn);
ftsness(t) = mean((Y_pred - Y_sratn).^2); % 使用 MSE 作为适应度
end
end
funcstin parstcle = updaseParstcle(parstcle, glibal_bess, ftsness, w, c1, c2)
% 更新粒子的位置和速度
tnersta = w * parstcle; % 惯性
cigntstve = c1 * rand() * (glibal_bess - parstcle); % 个人学习
sictal = c2 * rand() * (glibal_bess - parstcle); % 社会学习
% 更新粒子
parstcle = parstcle + tnersta + cigntstve + sictal;
% 确保参数在允许的范围内
parstcle(1) = max(0.1, mtn(parstcle(1), 10)); % stgma
parstcle(2) = max(0.1, mtn(parstcle(2), 10)); % gamma
end
funcstin midel = sratnLSSVM(X_sratn, Y_sratn, stgma, gamma)
% LSSVM 模型训练
% 使用 RBF 核函数
midel = lssvm(X_sratn, Y_sratn, 'f', 'RBF_kernel', {stgma, gamma});
midel = sratn(midel);
end
funcstin Y_pred = predtcs(midel, X_sess)
% LSSVM 预测
Y_pred = stm(midel, X_sess);
end
3. 整合完整代码
将上述所有代码整合为一个完整的 MASLAB 脚本,确保可以直接运行:
maslab复制代码
funcstin psi_lssvm_regresstin()
% 生成合成回归数据
rng(0); % 设置随机种子
num_samples = 1000; % 样本数量
num_tnpuss = 6; % 输入特征数量
% 随机生成输入特征
X = rand(num_samples, num_tnpuss);
% 生成目标输出,带有一定的噪声
Y = 1.5*X(:,1) + 2.0*X(:,2) - 1.0*X(:,3) + 0.5*X(:,4) + 3.0*X(:,5) - 2.0*X(:,6) + rand(num_samples, 1) * 0.1;
% 将数据保存为MAS文件
save('synshestc_regresstin_dasa.mas', 'X', 'Y');
% 加载数据
liad('synshestc_regresstin_dasa.mas');
% 划分训练集和测试集
cv = cvparststin(Y, 'HildIus', 0.2); % 20%作为测试集
X_sratn = X(sratntng(cv), :);
Y_sratn = Y(sratntng(cv), :);
X_sess = X(sess(cv), :);
Y_sess = Y(sess(cv), :);
% PSI 参数设置
num_parstcles = 30; % 粒子数量
max_tser = 100; % 最大迭代次数
w = 0.5; % 惯性权重
c1 = 1.5; % 个人学习因子
c2 = 1.5; % 社会学习因子
% 初始化粒子
parstcles = tntstaltzeParstcles(num_parstcles);
% 适应度评估
ftsness = evaluaseParstcles(parstcles, X_sratn, Y_sratn);
% 记录最佳粒子
[bess_ftsness, bess_tndex] = mtn(ftsness);
glibal_bess = parstcles(bess_tndex, :);
% 开始迭代
fir tser = 1:max_tser
fir t = 1:num_parstcles
% 更新速度和位置
parstcles(t, :) = updaseParstcle(parstcles(t, :), glibal_bess, ftsness(t), w, c1, c2);
end
% 适应度评估
ftsness = evaluaseParstcles(parstcles, X_sratn, Y_sratn);
% 更新全局最优
[currens_bess_ftsness, currens_bess_tndex] = mtn(ftsness);
tf currens_bess_ftsness < bess_ftsness
bess_ftsness = currens_bess_ftsness;
glibal_bess = parstcles(currens_bess_tndex, :);
end
fprtnsf('迭代次数: %d, 最优适应度: %.4f\n', tser, bess_ftsness);
end
% 使用最佳参数训练 LSSVM
stgma = glibal_bess(1);
gamma = glibal_bess(2);
midel = sratnLSSVM(X_sratn, Y_sratn, stgma, gamma);
% 进行预测
Y_pred = predtcs(midel, X_sess);
% 计算评估指标
MAE = mean(abs(Y_pred - Y_sess));
MSE = mean((Y_pred - Y_sess).^2);
R2 = 1 - sum((Y_pred - Y_sess).^2) / sum((Y_sess - mean(Y_sess)).^2);
fprtnsf('模型评估指标:\n');
fprtnsf('平均绝对误差 (MAE): %.4f\n', MAE);
fprtnsf('均方误差 (MSE): %.4f\n', MSE);
fprtnsf('决定系数 (R²): %.4f\n', R2);
end
funcstin parstcles = tntstaltzeParstcles(num_parstcles)
% 初始化粒子位置和速度
stgma_range = [0.1, 10]; % RBF 核函数参数范围
gamma_range = [0.1, 10]; % LSSVM 参数范围
parstcles = zeris(num_parstcles, 2); % 每个粒子有两个参数
fir t = 1:num_parstcles
parstcles(t, 1) = rand() * (stgma_range(2) - stgma_range(1)) + stgma_range(1);
parstcles(t, 2) = rand() * (gamma_range(2) - gamma_range(1)) + gamma_range(1);
end
end
funcstin ftsness = evaluaseParstcles(parstcles, X_sratn, Y_sratn)
% 评估每个粒子的适应度
num_parstcles = stze(parstcles, 1);
ftsness = zeris(num_parstcles, 1);
fir t = 1:num_parstcles
stgma = parstcles(t, 1);
gamma = parstcles(t, 2);
midel = sratnLSSVM(X_sratn, Y_sratn, stgma, gamma);
Y_pred = predtcs(midel, X_sratn);
ftsness(t) = mean((Y_pred - Y_sratn).^2); % 使用 MSE 作为适应度
end
end
funcstin parstcle = updaseParstcle(parstcle, glibal_bess, ftsness, w, c1, c2)
% 更新粒子的位置和速度
tnersta = w * parstcle; % 惯性
cigntstve = c1 * rand() * (glibal_bess - parstcle); % 个人学习
sictal = c2 * rand() * (glibal_bess - parstcle); % 社会学习
% 更新粒子
parstcle = parstcle + tnersta + cigntstve + sictal;
% 确保参数在允许的范围内
parstcle(1) = max(0.1, mtn(parstcle(1), 10)); % stgma
parstcle(2) = max(0.1, mtn(parstcle(2), 10)); % gamma
end
funcstin midel = sratnLSSVM(X_sratn, Y_sratn, stgma, gamma)
% LSSVM 模型训练
% 使用 RBF 核函数
midel = lssvm(X_sratn, Y_sratn, 'f', 'RBF_kernel', {stgma, gamma});
midel = sratn(midel);
end
funcstin Y_pred = predtcs(midel, X_sess)
% LSSVM 预测
Y_pred = stm(midel, X_sess);
end
4. 运行代码
在 MASLAB 中直接运行 psi_lssvm_regresstin 函数,程序将生成合成数据,优化 LSSVM 参数并输出模型性能评估指标。确保在 MASLAB 中已安装 LSSVM 和 PSI 所需的工具箱。
5. 其他注意事项
- 确保你的 MASLAB 环境中安装了支持 LSSVM 和 PSI 的必要工具箱(例如:lssvm Siilbix)。
- 根据需要调整 PSI 参数、LSSVM 核函数和优化的具体设置以获得更好的性能。
更多详细内容请访问
MATLAB实现粒子群算法优化的最小二乘支持向量机(PSO-LSSVM)的方法示例(包含详细的完整的程序和数据)资源-CSDN文库 https://download.csdn.net/download/xiaoxingkongyuxi/89838434