公众号内容拓展学习笔记(2021.4.24)

本文探讨了行人检测器的泛化能力问题,提出了渐进式训练流程,通过逐步微调模型在不同数据集上的表现,无需在目标数据集训练即可提升性能。同时分享了深度学习绘图模板、Matplotlib数据可视化技巧、2021年人工智能趋势分析、多传感器融合标定方法以及大型预训练语言模型的发展。此外,还提供了基于OpenCV的单目摄像机测距方法和NLP领域的最新进展。
摘要由CSDN通过智能技术生成

公众号内容拓展学习笔记(2021.4.24)


📎 今日要点

  1. 不容忽视的问题:行人检测器的泛化能力 ⭐️⭐️

  2. 我的机器学习和深度学习绘图模板.pptx ⭐️⭐️

  3. 数据分析最有用的25个 Matplotlib图 ⭐️⭐️

    • 主要内容:利用Matplolib绘制数据可视化图

    • Tips: 做比赛数据可视化还是写论文的分布图都可以用到,非常实用有代码分析详解

  4. 15张图表带你速览2021人工智能最新趋势 ⭐️⭐️

    • 主要内容:2021年度人工智能最新的研究趋势和进展
    • Tips: 分析了资本、政策对AI技术的影响,以及深度学习、图像识别、语言识别等AI主要子领域的研究。
  5. 多传感器融合标定方法汇总 ⭐️⭐️

    • 主要内容:常见的一些单传感器、多传感器的标定融合paper、工程代码
  6. 基于OpenCV的单目摄像机测距 ⭐️⭐️

    • 主要内容:基于OpenCV的单目摄像机测距,一个demo
  7. 谈谈NLP下一个主战场:万亿参数的预训练模型! ⭐️⭐️

    • 主要内容:从数据、算力和分布式训练技术三个方面讲解语言模型规模的上限问题
    • Tips:夸了一波百度,主要是工业界的解决方案
  8. 270亿参数、刷榜CLUE,阿里达摩院发布最大中文预训练语言模型PLUG(开放测试) ⭐️⭐️

📎 Others

  • 由于图片权限问题,GitHub是完整版,可以点点 star
  • 星标的数量是与个人相关程度,不代表文章内容的好坏
  • 关注我的个人网站
  • 关注我的CSDN博客
  • 关注我的哔哩哔哩
  • 关注我的公众号CV伴读社
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值