图解深度学习
文章平均质量分 91
《图解深度学习》读书笔记
逍遥郎wj
凡读必记
展开
-
《图解深度学习》学习笔记(一)
第一章 绪论监督学习:需要基于输入数据及其期望输出,通过训练从数据中提取通用信息或特征信息(特征值),以此得到预测模型。这里的特征值是指根据颜色和边缘等认为定义的提取方法从训练样本中提取的信息。(特征值就是根据图像转换成一串数值。)以往的图像识别普遍使用尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)、视觉词袋模型(Bag of Visual Words, BoVW)特征表达,以及费舍尔向量(Fishier Vector, FV)等尺度压缩方法。..原创 2020-12-26 16:26:59 · 1783 阅读 · 2 评论 -
《图解深度学习》学习笔记(二)
第三章 卷积神经网络原创 2020-12-29 16:50:22 · 864 阅读 · 0 评论 -
《图解深度学习》学习笔记(三)
第四章 受限玻尔兹曼机受限玻尔兹曼机是起源于图模型的神经网络。这种网络是由Hopfield神经网络那样的相互连接型网络衍生而来的。Hopfield神经网络、玻尔兹曼机、受限玻尔兹曼机、多个受限玻尔兹曼机堆叠组成的深度信念网络。神经网络分为两大类:前面介绍过的多层神经网络。分层。 相互连接型网络:不分层,单元之间相互连接,(可看做同层之间也互相连接)。它能够根据每个单元的值记忆网络状态,被称为:联想记忆。人类的大脑能够根据某种输入信息记忆或者联想与之有关的信息,比如看到“苹果”能够想..原创 2020-12-30 17:29:48 · 585 阅读 · 0 评论 -
《图解深度学习》学习笔记(四)
第5章 自编码器自编码器是一种基于无监督学习的数据维度压缩和特征表达方法,多层自编码器能够更好地进行压缩及特征表达。自编码器有多种变种:降噪自编码器、稀疏自编码器、以及由多层自编码器组成的栈式自编码器。一、自编码器自编码器是一种有效的数据维度压缩算法,主要应用于一下两个方面。构建一种能够重构输入样本并进行特征表达的神经网络。 训练多层神经网络时,通过自编码器训练样本得到参数初始值。...原创 2021-01-07 17:49:57 · 442 阅读 · 0 评论 -
《图解深度学习》学习笔记(五)
第六章 提高泛化能力的方法前情回顾:训练样本必不可少; 预处理后的数据更容易训练; 改进后的激活函数和训练方法有助于提高神经网络的泛化能力。本章将详细介绍这些方法。一、训练样本数据增强(data augmentation)ImageNet数据集ImageNet数据集中的类别按照层级结构分布:参照了自然语言处理领域的层级结构词典WordNet。每个大类下面又细分好多小类。不同类别下的样本图像的外观和形状也多种多样,拍摄环境、拍摄角度以及形状也存在差异。其卓越之处在于为图像添加..原创 2021-01-08 09:01:23 · 832 阅读 · 0 评论 -
《图解深度学习》学习笔记(六)
第七章 深度学习工具1、Theano在学习Theano时,我们必须了解共享变量的概念。由于函数的输入和输出是Python的Numpy数组,所以每次调用这些函数时,GPU都需要将其复制到内存里。如果使用共享变量,GPU就可以从共享变量中获取数据,无须每次都将数据复制到内存里。通过使用共享变量,使用误差反向传播算法等梯度下降法估计参数时,就无须每次调整时都将符号变量复制到内存中,因此运算速度能够得到提高。将训练样本也作为共享变量,即可避免每次调整时都将训练样本复制到内存中。共享变量的创建可以使用sh..原创 2021-01-08 09:14:12 · 504 阅读 · 0 评论