
深度学习
文章平均质量分 87
逍遥郎wj
凡读必记
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【论文翻译】SPIN:Learning to Reconstruct 3D Human Pose and Shape via Model-fitting in the Loop
姿态估计有两种方法:一种是基于迭代像素拟合模型的优化算法,但是初始化过程慢且初始化对结果的影响较大。一种是基于神经网络直接拟合模型的回归算法,这个快稳但是精度并非像素级。两者做个结合:用神经网络拟合一个初始化模型,然后再用迭代优化算法去验证这个模型,以此作为监督信息来指导网络更新。网络更新几轮后,神经网络拟合的模型更好了,迭代算法像素级检查发现误差变小了。翻译 2022-08-23 00:06:04 · 1039 阅读 · 0 评论 -
Ubuntu非管理员root安装ninja:解决RuntimeError: Ninja is required to load C++ extensions错误
服务器是共用的,所以无法使用sudo apt-get 命令快速安装。只能自己下载git上的源代码然后编译,装在自己的私人目录下——否则 sudo apt-get 安装很容易,55555555Ninja是一个比Make更快速的小型构建系统。其github地址为:https://ninja-build.org/Ninja源码安装构造Ninja可使用CMake或python,需要先安装re2c:1、安装re2c。下载地址:http://re2c.org/index.htmlta..原创 2021-08-04 14:45:43 · 9243 阅读 · 4 评论 -
【转载】细嚼慢咽读论文:点云上采样GAN的实践——PU-GAN
论文标题:PU-GAN: a Point Cloud Upsampling Adversarial Network标签:有监督 | 点云上采样首先我们来分析一下文章题目:PU-GAN: a Point Cloud Upsampling Adversarial NetworkPU即Point Upsampling,也就是本文要做的任务是点云上采样。关于点云上采样的介绍,我在介绍PU-Net的这篇文章中介绍过,可参考:刘昕宸:细嚼慢咽读论文:点云上采样网络开天辟地PU-Netzhuan转载 2021-07-28 22:28:20 · 2165 阅读 · 0 评论 -
【转载】细嚼慢咽读论文:点云上采样网络开天辟地PU-Net
论文标题:PU-Net: Point Cloud Upsampling Network标签:有监督 | 点云上采样首先回答一个问题:什么是点云的上采样任务呢?简单来说,点云上采样任务就是输入稀疏点云,输出稠密点云,同时需要保持住点云的基本形状、均匀程度等特征。如下图所示,某上采样算法输入稀疏骆驼点云,输出稠密骆驼点云。上采样的最主要应用就是作为一种数据增强的方式,为下游任务(比如分类、分割等)提供高质量的数据。相关任务:点云补全、图像超分辨率1 motivatio转载 2021-07-28 17:11:58 · 1319 阅读 · 0 评论 -
【转载】泊松盘采样算法
作者:光影帽子链接:https://www.zhihu.com/question/276554643/answer/1039095847来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。泊松盘采样(possion disk sampling)的特点是任何两个点的距离都不会隔得太近。比如下图,左边是随机生成的点,右边是泊松盘采样生成的点。算法步骤:第一步:设定好两个点之间最近的距离r,以及采样点所在空间的维度n,比如2维平面第二步:在空间里生成足够.转载 2021-07-28 15:23:37 · 4263 阅读 · 1 评论 -
【转载】搞懂PointNet++,这篇文章就够了!
论文标题:PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space1 motivation从名字都能看得出来是对PointNet的改进,迭代版本你刘昕宸:细嚼慢咽读论文:点云特征学习开天辟地PointNetzhuanlan.zhihu.comPointNet does not capture local structures induced by the metric space转载 2021-07-28 11:47:08 · 2017 阅读 · 0 评论 -
【转载】细嚼慢咽读论文:PointNet论文及代码详细解析
文章转载自知乎论文标题:PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation标签:有监督 | 特征学习、点云分类、语义分割首先回答3个问题作为引子:Q1:什么是点云?简单来说就是一堆三维点的集合,必须包括各个点的三维坐标信息,其他信息比如各个点的法向量、颜色等均是可选。点云的文件格式可以有很多种,包括xyz,npy,ply,obj,off等(有些是mesh不过问题不大,因为me转载 2021-07-26 18:18:33 · 2339 阅读 · 0 评论 -
【r-GAN】论文翻译 - Learning Representations and Generative Models for 3D Point Clouds
摘要:三维几何数据为研究表示学习和生成建模提供了一个很好的领域。在本文中,我们研究用点云表示的几何数据。介绍了一种具有最先进的重构质量和泛化能力的deep AutoEncoder (AE) 网络。学习表示在三维识别任务上优于现有方法,通过简单的代数操作实现了形状编辑,如语义部分编辑、形状类比、形状插值以及形状补全。我们对不同的生成模型进行了深入的研究,包括在原始点云上运行的GANs、在我们AEs的固定潜空间中训练的具有显著提升的GANs以及高斯混合模型(GMMs)。为了定量地评估生成模型,我们引入了基于翻译 2021-07-14 14:04:19 · 2554 阅读 · 0 评论 -
【转载】空间变换网络--spatial transform network
转载位置:空间变换网络--spatial transform networkCNN分类时,通常需要考虑输入样本的局部性、平移不变性、缩小不变性,旋转不变性等,以提高分类的准确度。这些不变性的本质就是图像处理的经典方法,即图像的裁剪、平移、缩放、旋转,而这些方法实际上就是对图像进行空间坐标变换,我们所熟悉的一种空间变换就是仿射变换,图像的仿射变换公式可以表示如下:式中,(xSource,ySourcexSource,ySource)表示原图像像素点,(xTarget,yTargetxTarget,转载 2021-06-29 17:07:39 · 1059 阅读 · 0 评论