python之Pandas数据分析实战教程:五大核心应用详解

本教程基于实际代码案例,深入讲解Pandas在数据处理中的五大核心应用场景。通过分组聚合、透视表、多级索引、自定义函数可视化的实战演示,帮助您快速掌握数据分析核心技能。


应用一:分组聚合(GroupBy)

场景说明

按产品分类统计总销量销售额,适合快速汇总分类数据。

代码示例

# 基础分组求和
a = df.groupby('Product')[['Units_Sold','Total_Sales']].sum()

# 多聚合函数分组 (修正元组为列表)
b = df.groupby('Product')[['Units_Sold','Total_Sales']].agg([np.sum, np.mean])

参数解析

参数 作用 类比解释
groupby('Product') 按产品分组,类似Excel的分类汇总 相当于SQL的GROUP BY Product
[['Units_Sold',...]] 选择要聚合的列 避免处理无关数据
agg([np.sum, np.mean]) 对每列同时计算总和均值 支持多个统计指标

输出结构

               Units_Sold       Total_Sales       
                    sum   mean            sum   mean
Product                                              
A                  1234  15.25      56789.00  701.23
B                  2345  18.75      67890.50  812.34

注意事项

  • 使用列表[ ]包裹聚合函数,元组会导致错误
  • 可通过.reset_index()将分组键还原为普通列

应用二:基础透视表(Pivot Table)

场景说明

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我不是少爷.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值