本教程基于实际代码案例,深入讲解Pandas在数据处理中的五大核心应用场景。通过分组聚合、透视表、多级索引、自定义函数和可视化的实战演示,帮助您快速掌握数据分析核心技能。
应用一:分组聚合(GroupBy)
场景说明
按产品分类统计总销量和销售额,适合快速汇总分类数据。
代码示例
# 基础分组求和
a = df.groupby('Product')[['Units_Sold','Total_Sales']].sum()
# 多聚合函数分组 (修正元组为列表)
b = df.groupby('Product')[['Units_Sold','Total_Sales']].agg([np.sum, np.mean])
参数解析
参数 | 作用 | 类比解释 |
---|---|---|
groupby('Product') |
按产品分组,类似Excel的分类汇总 | 相当于SQL的GROUP BY Product |
[['Units_Sold',...]] |
选择要聚合的列 | 避免处理无关数据 |
agg([np.sum, np.mean]) |
对每列同时计算总和和均值 | 支持多个统计指标 |
输出结构
Units_Sold Total_Sales
sum mean sum mean
Product
A 1234 15.25 56789.00 701.23
B 2345 18.75 67890.50 812.34
注意事项
- 使用列表
[ ]
包裹聚合函数,元组会导致错误 - 可通过
.reset_index()
将分组键还原为普通列