startup.m
软链接:希望将某个特定的文件夹链接到 MATLAB 启动时的路径。软链接(symbolic link)只是将一个路径指向另一个路径,确保 MATLAB 可以在启动时访问你指定的目录或文件夹,但是它并不会自动在 MATLAB 窗口中打开该文件夹。能在 MATLAB 命令行中使用 which startup 查找到 startup.m 的路径。
setx GATOOLS_ROOT "C:\Users\admin\Documents\east0\gatools" # windows 设置环境变量
echo %GATOOLS_ROOT% # 查看是否设置成功
# cmd 窗口,需要以管理员身份运行,设置软链接
mklink "C:\Users\admin\Documents\MATLAB\startup.m" "%GATOOLS_ROOT%\startups\generic_startup.m"
- mklink 后不使用
/D
时,默认创建文件符号链接。/D
用于创建目录符号链接。 C:\Users\Documents\MATLAB\startup.m
是 MATLAB 默认路径下要创建的软链接路径。C:\path\to\your\folder
是你希望链接的实际文件夹路径。
如果你的目标是在 MATLAB 启动时直接打开某个文件夹,可以在 startup.m
中添加如下内容:
% 设置工作目录
cd('C:\Users\yourusername\Documents\MATLAB\gatools')
% 打开文件夹
open('C:\Users\yourusername\Documents\MATLAB\gatools')
绘图
在 MATLAB 中绘制函数图形的具体步骤如下:
-
定义变量
x
:通过设置x
的范围和步长来定义变量。例如,x = linspace(-10, 10, 1000);
将在 -10 到 10 之间生成 1000 个等间隔的点。 -
定义函数
y = f(x)
:通过给定的x
值计算y
,例如y = sin(x);
。 -
调用
plot
命令:使用plot(x, y)
绘制函数图形。
示例代码如下:
% Step 1: 定义变量 x
x = linspace(-10, 10, 1000);
% Step 2: 定义函数 y = f(x)
y = sin(x);
% Step 3: 调用 plot 命令绘制图形
plot(x, y);
title('Sine Function');
xlabel('x');
ylabel('sin(x)');
grid on; % 添加网格线
运行此代码后,会生成一个从 -10 到 10 的 sin(x)
函数的图形,并带有标题和轴标签。
二维线图
创建二维线图,使用 plot
函数。
例如,绘制在从 0 到 2π 的值组成的线性间距向量上的正弦函数:
x = linspace(0,2*pi);
y = sin(x);
plot(x,y)
可以标记轴并添加标题。
xlabel("x")
ylabel("sin(x)")
title("Plot of the Sine Function")
通过向 plot
函数添加第三个输入参量,可以使用红色虚线绘制相同的变量。
plot(x,y,"r--")
r--
为线条设定。每个设定可包含表示线条颜色、样式和标记的字符。标记是在绘制的每个数据点上显示的符号,例如,+
、o
或 *
。例如,g:*
请求绘制使用 *
标记的绿色点线。
MATLAB 包含了八个绘制图形的基本颜色选项,下表提供了显示的颜色以及相应的代码:
Color | Code |
---|---|
White | w |
Black | k |
Blue | b |
Red | r |
Cyan | c |
Green | g |
Magenta | m |
Yellow | y |
默认情况下,每次调用绘图函数、重置坐标区及其他元素以准备新绘图时,MATLAB 都会清空图窗。
使用 hold on
将绘图添加到现有图窗中,在使用 hold off
或关闭窗口之前,当前图窗窗口中会显示所有绘图。
x = linspace(0,2*pi);
y = sin(x);
plot(x,y)
hold on
y2 = cos(x);
plot(x,y2,":")
legend("sin","cos")
hold off
三维绘图
三维图通常显示一个由带两个变量的函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 定义的曲面图。
例如,对于给定的行向量和列向量 x x x 和 y y y,每个向量包含 [-2,2] 范围内的 20 个点,计算 z = x e − x 2 − y 2 z=xe^{-x^2-y^2} z=xe−x2−y2。
x = linspace(-2,2,20);
y = x';
z = x .* exp(-x.^2 - y.^2);
然后,创建曲面图。
surf(x,y,z)
surf
函数及其伴随函数 mesh
以三维形式显示曲面图。
surf
使用颜色显示曲面图的连接线和面。mesh
生成仅以颜色标记连接线条的线框曲面图。
多个绘图
tiledlayout
和 subplot
都可以在同一窗口的不同部分中显示多个绘图,但 tiledlayout
提供了更灵活的布局和标签控制。
例如,在图窗窗口中创建 2×2 布局。然后,每当您要某个绘图出现在下一区域中时,请调用 nexttile
。
t = tiledlayout(2,2);
title(t,"Trigonometric Functions")
x = linspace(0,30);
nexttile
plot(x,sin(x))
title("Sine")
nexttile
plot(x,cos(x))
title("Cosine")
nexttile
plot(x,tan(x))
title("Tangent")
nexttile
plot(x,sec(x))
title("Secant")
常用函数
字符串
strmatch 函数:字符串匹配
strmatch 是一个用于匹配字符串的函数,它用于查找一个字符串是否与目标字符串完全或部分匹配。strmatch 是区分大小写的。
该函数会返回匹配字符串的位置或与目标字符串匹配的索引,通常用于字符串匹配的情况。
index = strmatch(str, strArray)
- str:要匹配的目标字符串,可以是一个字符串(字符向量)或字符串数组。
- strArray:字符串数组或一个字符串的单元格数组,包含多个字符串,strmatch 会检查每个字符串与目标字符串 str 的匹配情况。
- index:返回一个索引或匹配的位置。如果有多个匹配项,返回这些匹配项的位置。如果没有匹配项,则返回空数组。返回的 index 是 strArray 中与 str 匹配的字符串的索引。
用法一:查找匹配字符串的位置。
strArray = {'apple', 'banana', 'cherry', 'pineapple'};
index = strmatch('apple', strArray);
disp(index); % 1 4
strmatch 找到了两个匹配的 “apple”,一个在数组的第 1 位,另一个在第 4 位。
用法二:检查字符串的某一部分字符。
检查字符串 date 的前四个字符是否是 “2024”。如果是,则将变量 year 设置为 2024。
date = '20241111';
if(strmatch(date(1:4),'2024'))
year = 2024;
end
存在性
exist 函数:检查是否存在
exist 是一个用于检查变量、函数、文件或其他对象是否存在的函数。它可以返回不同类型对象的存在性信息。
exist 的返回值有助于判断对象的类型和状态,通常与 if 语句结合使用,以确保代码在运行时能正确地处理缺失的文件或变量。
exist 函数的基本语法如下:
status = exist(name)
status = exist(name, 'type')
- name:要检查的对象的名称,通常是字符串或字符向量。它可以是变量、函数、文件、类、目录等的名称。
- ‘type’ (可选):该参数指定要检查的对象类型。‘var’:变量,‘builtin’:内建函数,‘file’:文件,‘dir’:文件夹,‘class’:类。
返回的数字取决于 name 和 type 的组合:
- 0:对象不存在。
- 1:如果是变量,表示变量存在。
用法一:检查文件的存在性。
在处理文件时,通常会使用 exist 来检查文件是否存在。例如,在读取数据文件之前:
filename = 'data.txt';
if exist(filename, 'file') == 2
data = load(filename);
else
disp('File does not exist!');
end
用法二:检查变量的存在性。
在运行代码时,可以使用 exist 来确认变量是否已定义:
if exist('myVar', 'var') ~= 1 % 如果返回值不等于 1
disp('Variable does not exist');
else
disp('Variable exists');
end
用法三:检查变量是否存在,如果不存在或为空,赋默认值。
if(~exist('res') | isempty(res))
res = 1.5;
end
isfield 函数:检查结构体中是否存在特定字段
isfield 是 MATLAB 中用于检测某个结构体中是否存在特定字段的函数。
其基本语法如下:
tf = isfield(S, 'fieldname')
- S:要检查的结构体。
- ‘fieldname’:需要检查是否存在的字段名称(字符串形式)。
- tf:返回一个布尔值,如果 fieldname 是结构体 S 中的字段,则返回 true;否则返回 false。
S.name = 'John';
S.age = 30;
% 检查是否存在 'name' 字段
isNameField = isfield(S, 'name') % 返回 true
% 检查是否存在 'gender' 字段
isGenderField = isfield(S, 'gender') % 返回 false
用法一:检查结构体中是否有某个字段,以便赋值。
if(isfield(objs,'data'))
data = objs.data;
else
data = [];
end
文件相关
fileparts 函数:分解文件路径
下面的这行代码通过 mfilename('fullpath')
获取当前脚本的完整路径,并使用 fileparts
函数提取文件的路径部分(即 this_dir
)。this_dir
存储了当前脚本所在的文件夹路径,即当前脚本的父目录。
[this_dir, ~, ~] = fileparts(mfilename('fullpath'));
fileparts 是 MATLAB 中用于分解文件路径的函数,它将一个完整的文件路径拆解成不同的部分,通常返回文件所在的目录路径、文件名和扩展名。语法如下:
[folder, name, ext] = fileparts(filepath)
- filepath:一个字符串或字符数组,表示完整的文件路径,包含文件所在的文件夹、文件名和扩展名。这个路径可以是绝对路径或相对路径。
- folder:返回文件路径的目录部分,即文件所在的文件夹的路径。如果 filepath 是文件名,则返回当前工作目录。
- name:返回文件的名称,不包括扩展名。
- ext:返回文件的扩展名(以点 . 开头),如果文件没有扩展名,则返回空字符串。
具体例子如,
filepath = 'C:\Users\admin\Documents\myfile.txt';
[folder, name, ext] = fileparts(filepath);
- folder = ‘C:\Users\admin\Documents’
- name = ‘myfile’
- ext = ‘.txt’
fullfile 函数:构建完整文件路径
与 fileparts 相对的是 fullfile 函数,用于将上面三部分构建成完整路径。
fileparts 可以用于从路径中提取文件夹和文件名部分,然后通过 fullfile 函数重新构建路径。
[folder, name, ext] = fileparts('C:\Users\admin\Documents\myfile.txt');
newpath = fullfile(folder, [name, '_new', ext]);
% 这会生成 C:\Users\admin\Documents\myfile_new.txt
脚本和函数 .m 文件
除了在 MATLAB 命令提示符下输入命令,MATLAB 还支持创建和运行脚本文件和函数文件。
- 脚本文件:包含一系列 MATLAB 命令的简单文本文件,扩展名为
.m
。脚本文件通过在命令行中输入文件名来运行,可以共享变量并与工作区交互。 - 函数文件:也是扩展名为
.m
的文本文件,但包含定义函数的代码。函数有自己的局部变量,并且通过输入和输出参数进行交互。函数文件的基本结构如下:function [output1, output2] = myFunction(input1, input2) % Function body with operations on input variables output1 = input1 + input2; output2 = input1 * input2; end
通过这种方式,MATLAB 允许用户将代码封装成可重用的模块,从而提高代码的组织和可维护性。
MATLAB 创建并运行脚本文件
创建脚本文件,需要使用文本编辑器。
- 用命令创建脚本文件,如果想把 .m 文件存储在一个特定的文件夹如
progs
下,那么一定要提供整个路径。如果只有edit prog1.m
命令则会在默认情况下,MATLAB 目录中创建文件。
mkdir progs % create directory progs under default directory
chdir progs % changing the current directory to progs
edit prog1.m % creating an m file named prog1.m
- 如果使用的是 IDE,选择 NEW -> Script。这也打开编辑器,并创建一个文件名为命名。输入代码后可以命名并保存文件。
在编辑器中输入以下代码,
NoOfStudents = 6000;
TeachingStaff = 150;
NonTeachingStaff = 20;
Total = NoOfStudents + TeachingStaff ...
+ NonTeachingStaff;
disp(Total);
创建和保存文件后,运行脚本文件:
-
编辑器窗口中单击“Run”按钮或
-
只要在命令提示符下键入文件名(不含扩展名):>> prog1
命令窗口提示显示的结果是:
6170
命令窗口输入命令,工作区显示变量
MATLAB 桌面包含的面板如下:
- 当前文件夹 - 此面板允许访问项目文件夹和文件。
- 命令窗口 - 这是主要区域,用户在命令行中输入命令,命令提示符(>>).
- 工作区 - 工作区显示所有变量,无论是创建的或从文件导入的变量。
- 命令历史记录 - 此面板显示或重新运行,在命令行中输入的命令。
命令在命令窗口输入
MATLAB 提供管理会话的各种命令:
命令 | 描述 |
---|---|
clc | 清除命令窗口。 |
clear | 从内存中删除变量。 |
exist | 检查存在的文件或变量。 |
global | 声明变量为全局。 |
help | 搜索帮助主题。 |
lookfor | 搜索帮助关键字条目。 |
quit | 停止 MATLAB。 |
who | 列出当前变量。 |
whos | 列出当前变量(长显示)。 |
使用 MATLAB 的时候有一些系统命令可以方便我们的操作,如在当前的工作区中可以使用系统命令保存为一个文件、加载文件、显示日期、列出目录中的文件和显示当前目录等。
MATLAB 常用的系统相关的命令:
命令 | 描述 |
---|---|
cd | 改变当前目录。 |
date | 显示当前日期。 |
delete | 删除一个文件。 |
diary | 日记文件记录开/关切换。 |
dir | 列出当前目录中的所有文件。 |
load | 负载工作区从一个文件中的变量。 |
path | 显示搜索路径。 |
pwd | 显示当前目录。 |
save | 保存在一个文件中的工作区变量。 |
type | 显示一个文件的内容。 |
what | 列出当前目录中的所有 MATLAB 文件。 |
wklread | 读取 .wk1 电子表格文件。 |
MATLAB 用于工作数组、矩阵和向量的各种命令:
命令/函数 | 描述 |
---|---|
cat | 连接数组 |
find | 查找非零元素的索引 |
length | 计算元素数量 |
linspace | 创建间隔向量 |
logspace | 创建对数间隔向量 |
max | 返回最大元素 |
min | 返回最小元素 |
prod | 计算数组元素的连乘积 |
reshape | 重新调整矩阵的行数、列数、维数 |
size | 计算数组大小 |
sort | 排序每个列 |
sum | 每列相加 |
eye | 创建一个单位矩阵 |
ones | 生成全 1 矩阵 |
zeros | 生成零矩阵 |
cross | 计算矩阵交叉乘积 |
dot | 计算矩阵点积 |
det | 计算数组的行列式 |
inv | 计算矩阵的逆 |
pinv | 计算矩阵的伪逆 |
rank | 计算矩阵的秩 |
rref | 将矩阵化成行最简形 |
cell | 创建单元数组 |
celldisp | 显示单元数组 |
cellplot | 显示单元数组的图形表示 |
num2cell | 将数值阵列转化为异质阵列 |
deal | 匹配输入和输出列表 |
iscell | 判断是否为元胞类型 |
MATLAB 提供了大量的绘制图表命令:
命令/函数 | 描述 |
---|---|
axis | 人工选择坐标轴尺寸 |
fplot | 智能绘图功能 |
grid | 显示网格线 |
plot | 生成 XY 图 |
print | 打印或绘图到文件 |
title | 把文字置于顶部 |
xlabel | 将文本标签添加到 x 轴 |
ylabel | 将文本标签添加到 y 轴 |
axes | 创建轴对象 |
close | 关闭当前的绘图 |
close all | 关闭所有绘图 |
figure | 打开一个新的图形窗口 |
gtext | 通过鼠标在指定位置放注文 |
hold | 保持当前图形 |
legend | 鼠标放置图例 |
refresh | 重新绘制当前图形窗口 |
set | 指定对象的属性,如轴 |
subplot | 在子窗口中创建图 |
text | 在图上做标记 |
bar | 创建条形图 |
loglog | 创建双对数图 |
polar | 创建极坐标图像 |
semilogx | 创建半对数图(对数横坐标) |
semilogy | 创建半对数图(对数纵坐标) |
stairs | 创建阶梯图 |
stem | 创建针状图 |
变量在工作区显示
MATLAB 支持以下特殊变量和常量:
名称 | 描述 |
---|---|
ans | 默认的变量名,最近一次操作运算结果 |
eps | 浮点数的相对误差 |
i, j | 虚数单位,定义为 i² = j² = -1 |
Inf | 代表无穷大 |
NaN | 代表不定值(不是数字) |
pi | 圆周率 |
工作区包含在 MATLAB 中创建或从数据文件或其他程序导入的变量。例如,下列语句在工作区中创建变量 A 和 B。
A = magic(4);
B = rand(3,5,2);
whos % 使用 whos 可以查看工作区的内容
桌面上的“工作区”窗格也会显示变量。
退出 MATLAB 后,工作区变量不会保留。使用 save 命令保存数据以供将来使用,
save myfile.mat
通过保存,系统会使用 .mat
扩展名将工作区保存在当前工作文件夹中一个名为 MAT 文件的压缩文件中。
要清除工作区中的所有变量,使用 clear
命令。
使用 load 将 MAT 文件中的数据还原到工作区。
load myfile.mat
矩阵和数组
矩阵和数组
MATLAB 是“matrix laboratory”的缩写形式。MATLAB 主要用于处理 整个的矩阵和数组,而其他编程语言大多逐个处理数值。
- 所有 MATLAB 变量都是多维数组,与数据类型无关。
- 矩阵是指通常用来进行线性代数运算的二维数组。
MATLAB 专门用于处理矩阵和数组操作。与其他编程语言相比,它能够更高效地处理这些数据结构,适用于线性代数、数据分析、图像处理等。
MATLAB 中矩阵和数组长什么样?
a = [1 2 3 4] % 单行的叫数组,数组 a 包含四个元素,使用逗号 (,) 或空格分隔各元素
a = [1 3 5; 2 4 6; 7 8 10] % 多行的叫矩阵,使用分号分隔各行
再直观地来看,
这是数组 a:
这是矩阵 a:
MATLAB 怎么用矩阵计算?
MATLAB 常用的运算符和特殊字符如下表所示:
符号 | 描述 |
---|---|
+ | 加;加法运算符 |
- | 减;减法运算符 |
* | 标量和矩阵乘法运算符 |
.* | 数组乘法运算符 |
^ | 标量和矩阵求幂运算符 |
.^ | 数组求幂运算符 |
\ | 矩阵左除 |
/ | 矩阵右除 |
.\ | 阵列左除 |
./ | 阵列右除 |
: | 向量生成;子阵提取 |
( ) | 下标运算;参数定义 |
[ ] | 矩阵生成 |
. | 点乘运算,常与其他运算符联合使用 |
… | 续行标志;行连续运算符 |
, | 分行符(该行结果不显示) |
; | 语句结束;分行符(该行结果显示) |
% | 注释标志 |
' | 引用符号和转置运算符 |
.' | 非共轭转置运算符 |
= | 赋值运算符 |
为了说明 MATLAB 如何使用矩阵进行计算,这里提供一些具体例子:
创建和操作矩阵
% 创建一个 3x3 的矩阵
A = [1, 2, 3; 4, 5, 6; 7, 8, 9];
% 创建一个列向量
B = [10; 20; 30];
% 矩阵乘法
C = A * B;
在这个例子中,A
是一个 3x3 的矩阵,B
是一个 3x1 的列向量。MATLAB 直接支持矩阵乘法 A * B
,这在其他编程语言中可能需要手动编写嵌套循环实现。
创建矩阵的另一种方法是使用 ones、zeros 或 rand 等函数。例如,创建一个由零组成的 5×1 列向量。
z = zeros(5,1)
矩阵运算示例
% 创建矩阵
M = [1, 2; 3, 4];
% 计算矩阵的转置
M_T = M';
% 计算矩阵的逆
M_inv = inv(M);
% 矩阵元素逐个平方
M_squared = M .^ 2;
% 矩阵加法
N = [5, 6; 7, 8];
M_sum = M + N;
M_T
是M
的转置矩阵。M_inv
是M
的逆矩阵,前提是M
是可逆的。M_squared
逐个对M
中的每个元素平方,而不是矩阵乘法。M_sum
是矩阵M
和N
的逐元素相加。
MATLAB 允许使用单一的算术运算符或函数来处理矩阵中的所有值。例如,a + 10
是对矩阵 a 的所有值都 +10, sin(a)
是对矩阵 a 的所有值取 sin 值。
使用 * 运算符执行标准矩阵乘法,这将计算行与列之间的内积。例如,确认矩阵乘以其逆矩阵可返回单位矩阵: p = a*inv(a)
。
请注意,p 不是整数值矩阵。MATLAB 将数字存储为浮点值,算术运算可以区分实际值与其浮点表示之间的细微差别。
使用 format 命令可以显示多/少小数位数: format long
,format short
。注意 format 仅影响数字显示,而不影响 MATLAB 对数字的计算或保存方式。
要执行元素级乘法(而非矩阵乘法),请使用 .*
运算符: p = a.*a
乘法、除法和幂的矩阵运算符分别具有执行元素级运算的对应数组运算符。例如,计算 a 的各个元素的三次方: a.^3
定义一个 3×3 的矩阵 a,
这是 a + 10
,
这是 矩阵与其逆相乘得到单位矩阵, p = a*inv(a)
,
使用 format long
显示更多小数位,
用 p = a.*a
执行元素级乘法(而非矩阵乘法),
使用 a.^3
计算元素级的矩阵的幂,
例如,在图像处理领域,图像可以表示为二维矩阵,其中每个元素代表 像素值。MATLAB 使得处理和分析这些矩阵变得简单。以下是一个灰度图像的示例操作:
% 读取图像并将其转换为灰度矩阵
I = imread('example.jpg');
grayImage = rgb2gray(I);
% 对灰度图像应用卷积操作
kernel = [1, 1, 1; 0, 0, 0; -1, -1, -1];
filteredImage = conv2(double(grayImage), kernel, 'same');
MATLAB 的核心特性就是它内置的矩阵和数组处理功能,这允许用户以自然的数学语法编写程序,而无需手动实现低级矩阵运算。这对于需要处理大量数据的工程和科学计算非常有用。
串联
串联是将数组或矩阵连接起来形成更大数组的过程。在 MATLAB 中,方括号 []
是串联运算符,它用于水平或垂直拼接数组。
当两个数组在行方向上进行拼接时,称为水平串联。例如:
A = [1, 2, 3];
B = [4, 5, 6];
% 水平串联
C = [A, B]; % 结果是 C = [1, 2, 3, 4, 5, 6]
在这个示例中,A
和 B
是两个行向量,通过 []
拼接后形成了新的行向量 C
。
当两个数组在列方向上进行拼接时,称为垂直串联。例如:
D = [7; 8; 9];
E = [10; 11; 12];
% 垂直串联
F = [D; E]; % 结果是 F = [7; 8; 9; 10; 11; 12]'
在此例中,D
和 E
是列向量,通过 []
垂直串联后形成了新的列向量 F
。
可以将矩阵水平或垂直串联,但需要满足维度匹配的条件。例如:
M1 = [1, 2; 3, 4];
M2 = [5, 6; 7, 8];
% 水平串联矩阵
H = [M1, M2];
% 结果是 H = [1, 2, 5, 6;
% 3, 4, 7, 8]
% 垂直串联矩阵
V = [M1; M2];
% 结果是 V = [1, 2;
% 3, 4;
% 5, 6;
% 7, 8]
在水平串联 H
的情况下,矩阵的行数必须一致;而在垂直串联 V
中,矩阵的列数必须一致。
访问矩阵的元素
在 MATLAB 中,数组的索引从 1 开始。这与某些编程语言(如 Python、C 等)不同,这些语言的数组索引从 0 开始。
% 创建一个 3x3 的矩阵
M = [1, 2, 3; 4, 5, 6; 7, 8, 9];
% 访问矩阵的元素
element = M(2, 3); % 结果是 6,表示第二行第三列的元素
% 访问第一行的所有元素
firstRow = M(1, :); % 结果是 [1, 2, 3]
% 访问第三列的所有元素
thirdColumn = M(:, 3); % 结果是 [3; 6; 9]
重要注意事项:
- MATLAB 的索引从 1 开始,这意味着第一个元素的索引是
1
。 - 可以使用冒号运算符
:
来访问数组的范围,例如A(2:4)
会访问A
中从索引 2 到 4 的元素。 - 冒号还可以用于指定所有元素。例如,
M(:, 2)
代表矩阵M
的第二列的所有元素。
这种从 1 开始的索引对于 MATLAB 用户来说是标准,特别是在数学和工程应用中,因为它与线性代数中矩阵的常见表示方法一致。