前言
在解决带权有向图的最短路径中,Dijkstra算法(迪杰斯特拉)用于解决单源有向图的最短路径问题。我们把一张有向图的起始称为源点,结束称为终点,最短路径就是从源点到终点所经历的最小权值之和。本文将介绍Dijkstra算法的原理和实用案例。
(PS.如果你是为了今天的每日一题来的,那么你找对地方了,因为本人也是特地来恶补的)
原理介绍
一、寻找最短路径
Dijkstra算法的主要思想是贪心,每次将选中距离源点最近的点,并不断更新。为实现这个目的,我们维护一个dist[]数组和一个visited[]数组,并规定:
1、图的邻接矩阵中,若a无指向b的边,将其距离视为∞(为显示直观并且防止溢出,可设为MAX=INT_MAX/2)
2、dist[i]数组表示目前更新到的i位置距离源点的最短距离。
3、visited[i]==1表示i到源点的距离已是最近,无法再更新。
我们进行以下步骤:
1、初始化邻接矩阵、dist数组和visited数组
2、扫描dist数组,找出距离源点最近的节点i(若visited[i]=1,该节点不进行比较)
3、i距离源点的最短距离已被找到,将visited[i]设为1
4、找出i指向的节点并更新他们与源点的最短距离。
5、重复2~4
请看下面这个例子:
设源点为A,初始化阶段把源点dist[0]初始化为0,其余为MAX。(源点到源点的最短距离为0,其他点还未扫描到,可暂时用MAX初始化。同时,在扫描结束后,也可以依据是否有节点距离源点MAX,判断该有向图是否存在无法到达的节点。)
节点 |
A |
B |
C |
D |
E |
F |
dist |
0 |
MAX |
MAX |
MAX |
MAX |
MAX |
visited |
0 |
0 |
0 |
0 |
0 |
0 |
(1)第一次扫描:
扫描dist数组,距离源点最近的节点为A,因此A到源点的最短距离为0。
将visited[ A ]设为1。
将其余点设为min (dist[ A ]+G[ A ][i] ,dist[i])
(A到源点的最短距离已经求出,更新A直接指向的点i到源点的距离,即dist[A]+G[A][i],该点有可能比原本的dist[i]大,取最小)
节点 |
A |
B |
C |
D |
E |
F |
dist |
0 |
1 |
5 |
MAX |
MAX |
MAX |
visited |
1 |
0 |
0 |
0 |
0 |
0 |