引言
之前介绍的K-means和k-medoids算法都是针对数据为数值型的聚类算法,计算样本间的距离采用的是欧式距离,所以如果数据变量是类别型的采用这两种算法,就需要先进行one-hot编码或者dummy coding。针对类别型变量的聚类,可以采用k-modes聚类算法。
k-modes算法
当数据变量为数值型时,可以采用k-modes算法进行聚类。因为该算法中计算的是样本间的汉明距离,如果变量取值不是数值,最好先进行LabelEncode,计算速度会更快。
k-modes算法步骤:
1.随机选取k个初始中心点;
2.针对数据集中的每个样本点,计算样本点与k个中心点的距离(这边计算的是汉明距离,为两个样本点不同的属性取值的个数),将样本点划分到离它最近的中心点所对应的类别中;
3.类别划分完成后,重新确定类别的中心点,将类别中所有样本各特征的众数作为新的中心点对应特征的取值,即该类中所有样本的众心;
4.重复步骤2 3,直到总距离(各个簇中样本与各自簇中心距离之和)不再降低,返回最后的聚类结果。
算法总结:
1)基于“众心”的聚类方法;
2)数据变量为类别型的聚类方法;
3)时间复杂度低于K-means和K-medoids聚类;
python实现
#加载所需模块
from kmodes import kmodes
import multiprocessing
import matplotlib.pyplot as plt
from sklearn.metrics import silhouette_score
#模型训练不同的类别数对应的SSE及模型
def TrainCluster(df, start_k=2, end_k