小红书热门话题!美妆赛道爆文案例

文章分析了小红书上美妆领域的热门话题#妆前妆后,通过两个爆文案例揭示了成功笔记的要素,包括制造话题冲突的标题,鲜明的封面,强烈的对比内容以及有效的评论互动。此外,还总结了教程类、开箱类、合集类和对比类笔记的创作技巧,以提升笔记的吸引力和种草效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

小红书热门话题往往暗藏巨大的公域流量,品牌或是博主若能挖掘流量大,有价值的话题,将其植入笔记中,或能助力进一步打造爆文,通过千瓜数据-小红书榜单-话题增量榜洞察美妆赛道近期#妆前妆后这一话题价值度较高,本文根据爆文案例拆解,给予大家内容创作灵感。

在这里插入图片描述

图 | 千瓜数据

爆文案例一:

@超胖桃几《圆脸女子理发店沉浸式换头 没想到竟然….》

该笔记根据数据显示,预估阅读数高达两百多万,互动总数近10w,引起了用户的高度讨论。

在这里插入图片描述

图 | 千瓜数据

1、关于标题:博主以“理发店沉浸式换头,没想到…”制造话题与冲突,标题突出“沉浸式”、“换头”,吸引用户猎奇心理,吸引读者观看。

2、关于封面:笔记封面直接展示在理发店的妆容,鲜艳的色彩让用户有较强的冲击力。

3、关于内容:视频开头展示妆前,在封面已给出妆后,制造对比,让用户有观看的欲望。关键词部署上话题带了#妆前妆后、#沉浸式化妆、#圆脸发型推荐,吸引到喜欢美妆和发型的兴趣用户关注。

4、关于评论:通过千瓜数据查看,“好好看“、“下睫毛”是用户热评TOP10,同时博主在评论区积极回复用户求购信息,引导种草。

在这里插入图片描述

图 | 小红书截图

爆文案例二:

@鲜鲜超鲜《请大数据把我推给不会化妆的姐妹‼️》

根据数据显示:笔记预估阅读数超一百万,互动总量破10w+,且评论种草意向十分高涨。

在这里插入图片描述

图 | 千瓜数据

1、关于标题:博主以“请大数据把我推给不会化妆的姐妹!!”制造悬念、落差,标题突出“不会化妆的姐妹”,对标新手化妆党人群;运用“大数据”的梗,进一步加深笔记趣味性,吸引用户观看。

2、关于封面:笔记封面采用上下对比手法,采用无效妆容vs有效妆容,妆前妆后效果对比明显,击中新手化妆姐妹想要学习化妆技巧的心理。

3、关于内容:视频开头直指痛点“为什么跟着美妆博主学习,却还是达不到效果?”以来留住用户继续往下观看的好奇心,笔记以干货专业内容为主,所以即使视频较长,但内容够硬,观众也能买账。

4、关于评论:通过千瓜数据查看,评论种草意愿很高,“粉底液”、“遮瑕”、“牌子”是用户热评TOP10,纷纷表示“好看”、“收藏”,足以说明用户接纳程度是很高的。

在这里插入图片描述

图 | 千瓜数据

抄作业:笔记视频,前5秒钟需要立刻抓住人的眼球和需求,在美妆这一块区域,放大和细化是关键,对比性和差异化是技巧体现,这种详细的,手把手的教学,让读者能够很好的理解。

在这里插入图片描述

图 | 小红书截图

总结
小编总结了几种小红书实现美妆类笔记高概率爆文笔记技巧: ①教程类 以化妆教程和专业手法展示干货。 ②开箱类 (1)品牌新品展示 (2)产品测评和试色 ③合集类 (1)数字合集:6款高光集合 (2)特定人群合集:黄皮女孩不可错过的三款腮红 ④对比类 (1)强调普通人的蜕变,素颜女生化妆变成女神 (2)贴合站内美妆潮流,比如伪素颜、纯欲妆等。

### 如何查找小红书上的热门章 为了有效查找小红书上的热门章,可以从以下几个方面入手: #### 使用官方推荐和分类标签 小红书平台本身会根据用户的兴趣爱好以及当前热点话题来推送相关内容。首页的“发现”页面经常会展示一些热门笔记,这些内容通常都是经过算法筛选后的优质资源[^4]。 #### 利用搜索栏关键词优化技巧 当通过搜索引擎查询特定主题时,尝试加入时间限定词(如最新)、热度修饰语(最火、必看)或者具体领域名称(、旅游),这样能够帮助定位到近期受关注较高的帖子集合[^1]。 #### 关注KOL及品牌账号 知名博主(KOLs)往往拥有大量粉丝基础,在他们发布的众多作品里不乏高人气的作品;另外,各大知名品牌也会定期发布具有吸引力的内容吸引消费者互动交流,这些都是获取流行资讯的好去处。 #### 借助第三方数据分析工具 像千瓜数据这样的外部服务提供商可能会不定期公布关于社交网络发展趋势的研究成果,《2024年上半年小红书热门行业简报》就提供了详尽的数据支持与市场观察结论,有助于了解哪些类别正处于上升阶段并据此探索相应领域的精华贴。 ```python import requests def get_hot_articles(): url = 'https://www.xiaohongshu.com/discovery' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)', } response = requests.get(url, headers=headers) if response.status_code == 200: return response.text else: raise Exception('Failed to fetch data') print(get_hot_articles()) ``` 此段Python代码展示了如何利用requests库访问小红书网站的发现页以抓取HTML源码作为进一步解析的基础,不过请注意实际操作中还需要考虑反爬机制等因素的影响[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值