一、锁相环基本结构
1、上图即为锁相环基本组成结构:包含鉴相器、环路滤波器和压控振荡器三部分,相应的反馈回路如图示例为一个整数N分频器,实际也可以是复杂的小数分频器,通常采用Sigma-delta调制器控制实现;
2、锁定状态的相位差 ϕ 0 = ω 1 − ω 0 K p d K v c o \phi_0=\frac{\omega_1-\omega_0}{K_{pd}K_{vco}} ϕ0=KpdKvcoω1−ω0;(1)VCO输出频率: ω o u t = ω 0 + K v c o V c o n t \omega_{out}=\omega_0+K_{vco}V_{cont} ωout=ω0+KvcoVcont;
(2)鉴相器输出电压: V p d ‾ = K p d Δ ϕ \overline{V_{pd}}=K_{pd}\Delta\phi Vpd=KpdΔϕ;
(3)由上式可以看出,输入频率变化会引起相位误差改变;为使得相位误差足够小, K p d K v c o K_{pd}K_{vco} KpdKvco的值必须最大。3、PLL开环传输函数这里表示为: G ( s ) = K p d ∗ 1 s ∗ ( . . . ) ∗ K 0 s G(s)=K_{pd}* \frac{1}{s}*(...)* \frac{K_0}{s} G(s)=Kpd∗s1∗(...)∗sK0;
4、反馈回路传输函数表示为: K ( s ) = 1 / N K(s)=1/N K(s)=1/N。
- 闭环传输函数表示为: H ( s ) = ϕ o u t ( s ) ϕ i n ( s ) = G ( s ) 1 + K ( s ) ∗ G ( s ) = ω o u t ( s ) ω i n ( s ) H(s)=\frac{\phi_{out}(s)}{\phi_{in}(s)}= \frac{G(s)}{1+K(s)*G(s)}=\frac{\omega_{out}(s)}{\omega_{in}(s)} H(s)=ϕin(s)ϕout(s)=1+K(s)∗G(s)G(s)=ωin(s)ωout(s)
二、锁相环性能分析
- 波特图(下图为开环传输函数 G ( s ) = 50 s ( 1 + s 50 ) G(s)=\frac{50}{s(1+\frac{s}{50})} G(s)=s(1+50s)50对应的波特图)
幅频特性为0dB的点对应频率为环路带宽大小,环路带宽值对应相位的模值与 18 0 ∘ 180^{\circ} 180∘之差为相位裕度。
在实际情况下可以使用近似方法来快速构建波特图,用以分析锁相环性能,这里用 j ω j\omega jω代替 s s s:
幅频特性:
1、对于极点项 H 1 = 1 1 + j ω ω 0 H_1=\frac{1}{1+\frac{j\omega}{\omega_0}} H1=1+ω0jω1, 20 l o g 10 ( ∣ H 1 ∣ ) ω = ω 0 ≈ − 3 d B 20log_{10}(\left|H_1\right|)_{\omega=\omega_0}\approx-3dB 20log10(∣H1∣)ω=ω0≈−3dB, 20 l o g 10 ( ∣ H 1 ∣ ) ω = 0.1 ω 0 ≈ 0 d B 20log_{10}(\left|H_1\right|)_{\omega=0.1\omega_0}\approx0dB 20log10(∣H1∣)ω=0.1ω0≈0dB, 20 l o g 10 ( ∣ H 1 ∣ ) ω = 10 ω 0 ≈ − 20 d B 20log_{10}(\left|H_1\right|)_{\omega=10\omega_0}\approx-20dB 20log10(∣H1∣)ω=10ω0≈−20dB;作图时当 ω ≤ ω 0 \omega\leq\omega_0 ω≤ω0, 20 l o g 10 ( ∣ H 1 ∣ ) = 0 d B 20log_{10}(\left|H_1\right|)=0dB 20log10(∣H1∣)=0dB,当 ω ≥ ω 0 \omega\geq\omega_0 ω≥ω0, 20 l o g 10 ( ∣ H 1 ∣ ) 20log_{10}(\left|H_1\right|) 20log10(∣H1∣)以-20dB/dec(-20dB/十倍频)下降;对于 1 / s 1/s 1/s,则其前后均以-20dB/dec下降。
2、由于 l o g ( a ∗ b ) = l o g ( a ) + l o g ( b ) log(a*b)=log(a)+log(b) log(a∗b)=log(a)+log(b),所以每过一个极点,下降速度增加-20dB/dec; n n n重极点下降速度为一重极点的 n n n倍;同理可以得到零点特性,与极点恰好相反。相频特性:
1、对于极点项 H 1 = 1 1 + j ω ω 0 H_1=\frac{1}{1+\frac{j\omega}{\omega_0}} H1=1+ω0jω1, p h a s e ( H 1 ) ω = ω 0 ≈ − 4 5 ∘ phase(H_1)_{\omega=\omega_0}\approx-45^{\circ} phase(H1)ω=ω0≈−45∘, p h a s e ( H 1 ) ω = 0.1 ω 0 ≈ 0 ∘ phase(H_1)_{\omega=0.1\omega_0}\approx0^{\circ} phase(H1)ω=0.1ω0≈0∘, p h a s e ( H 1 ) ω = 10 ω 0 ≈ − 9 0 ∘ phase(H_1)_{\omega=10\omega_0}\approx-90^{\circ} phase(H1)ω=10ω0≈−90∘;作图时当 ω ≤ 0.1 ω 0 \omega\leq0.1\omega_0 ω≤0.1ω0, p h a s e ( H 1 ) = 0 ∘ phase(H_1)=0^{\circ} phase(H1)=0∘,当 ω ≥ 10 ω 0 \omega\geq10\omega_0 ω≥10ω0, p h a s e ( H 1 ) = − 9 0 ∘ phase(H_1)=-90^{\circ} phase(H1)=−90∘;当 ω ∈ ( 0.1 ω 0 , 10 ω 0 ) \omega\in(0.1\omega_0,10\omega_0) ω∈(0.1ω0,10ω0), p h a s e ( H 1 ) phase(H_1) phase(H1)以 − 4 5 ∘ -45^{\circ} −45∘/dec下降,对于 1 / s 1/s 1/s,则其前后均为 − 9 0 ∘ -90^{\circ} −90∘。
2、由于 l o g ( a ∗ b ) = l o g ( a ) + l o g ( b ) log(a*b)=log(a)+log(b) log(a∗b)=log(a)+log(b),所以每过一个极点,相位减小 − 9 0 ∘ -90^{\circ} −90∘, n n n重极点下降幅度为一重极点的 n n n倍;同理可以得到零点特性,与极点恰好相反。
- 环路带宽与相位裕度(参见《模拟CMOS集成电路设计》):
1、环路带宽越窄,鉴相器输出的高频成分被抑制的越厉害,但输出频率稳定时间越长。
2、 K p d K v c o K_{pd}K_{vco} KpdKvco越大,相位误差越小,但相位裕度(一般需要大于 4 5 ∘ 45^{\circ} 45∘)变小,系统稳定性变差。
3、相位裕度过小, ∣ H ∣ = 0 d B \left|H\right|=0dB ∣H∣=0dB处存在尖峰。