给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第1个数字减第2个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的6174,这个神奇的数字也叫Kaprekar常数。
例如,我们从6767开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意4位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个(0, 10000)区间内的正整数N。
输出格式:
如果N的4位数字全相等,则在一行内输出“N - N = 0000”;否则将计算的每一步在一行内输出,直到6174作为差出现,输出格式见样例。注意每个数字按4位数格式输出。
输入样例1:6767输出样例1:
7766 - 6677 = 1089 9810 - 0189 = 9621 9621 - 1269 = 8352 8532 - 2358 = 6174输入样例2:
2222输出样例2:
2222 - 2222 = 0000#include<cstdio> using namespace std; int increase_seq(int a) { int digit[4]={a/1000,a/100%10,a/10%10,a%10}; for(int i=0;i<4;i++) { for(int j=1;j<4-i;j++) { if(digit[j]<digit[j-1]) { int temp=digit[j]; digit[j]=digit[j-1]; digit[j-1]=temp; } } } return digit[0]*1000+digit[1]*100+digit[2]*10+digit[3]; } int reverse_number(int b) { return (b%10)*1000+(b/10%10)*100+b/100%10*10+b/1000; } void show_black_hole(int number) { int increase_number=increase_seq(number); int decrease_number=reverse_number(increase_number); int cha=decrease_number-increase_number; printf("%04d - %04d = %04d\n",decrease_number,increase_number,cha); if(cha==0 ||cha==6174) return; else show_black_hole(cha); } int main() { int digit; scanf("%d",&digit); if(digit<=0 ||digit>=10000) return -1; show_black_hole(digit); return 0; }