转载请附上链接http://blog.csdn.net/iemyxie/article/details/38236647
算法简介
主成分分析(PrincipalComponentAnalysis,简称PCA)是一种常用的基于变量协方差矩阵对信息进行处理、压缩和抽提的有效方法。主要用于对特征进行降维。
算法假设
数据的概率分布满足高斯分布或是指数型的概率分布。方差高的向量视为主元。
算法输入
包含n条记录的数据集
算法输出
降维或压缩后的数据集
算法思想
•
1.
计算所有样本的均值
m
和
协方差
矩阵
S
;
•
2.
计算
S
的特征值
,
并
由
大到小排序;
•
3.
选择前
n'
个特征值对应的特征矢量作成一个变换矩阵
E=[e1,e2, …, en’]
;
•
4.
最后,对于之前每一个
n
维的特征矢量
x
可以转换为
n’
维的新特征
矢量
y=transpose(E)(x-m)
weka运行结果
以weather.nominal.arff为例运行结果部分截图如下:
算法应用
人脸识别
图像压缩
信号去噪
转载请附上链接 http://blog.csdn.net/iemyxie/article/details/38236647