Halton Sequences霍尔顿序列生成器,计算Pi

通过在边长为1的正方形内画一个半径为1的圆弧,利用Halton序列生成的点集来估算Pi。Halton序列提供更均匀的分布,提高计算精度,避免了随机生成点的间隙过大和重叠问题。该程序依据点落在扇形内的比例来逼近Pi的值,即Pi = 4 * nc/n,其中nc是落在扇形内的点数,n是总点数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这个程序的原理是这样的。假如有一个边长为1的正方形。以正方形的一个端点为圆心,以1为半径,画一个圆弧,于是在正方形内就有了一个直角扇形。在正方形里随机生成若干的点,则有些点是在扇形内,有些点是在扇形外。正方形的面积是1,扇形的面积是0.25*Pi。设点的数量一共是n,扇形内的点数量是nc,在点足够多足够密集的情况下,会近似有nc/n的比值约等于扇形面积与正方形面积的比值,也就是nc/n = 0.25*Pi/1,即Pi = 4*nc/n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值