Halton序列
在统计学中,Halton
序列是用于生成空间中的点的序列,如Monte Carlo模拟的数值方法,虽然这些序列是确定性的,但它们的差异性很低,也就是说,在许多方面看起来是随机的。它们在1960年首次提出,是准随机数列的一个例子。它们概括了一维Van der Corput
序列
用于生成 R 2 R^2 R2中(0,1)x(0,1)点的Halton
序列的例子
Halton
数列是以质数为基的确定性方法构造的。举个简单的例子,让我们把Halton
序列的一个维度基于2,另一个基于3。为了生成2的序列,我们首先将区间 ( 0 , 1 ) (0,1) (0,1)分成两半,然后分成四分之一、八分之一等,这就产生了
1 2 , 1 4 , 3 4 , 1 8 , 5 8 , 3 8 , 7 8 , 1 16 , 9 16 . . . \frac{1}{2},\frac{1}{4},\frac{3}{4},\frac{1}{8},\frac{5}{8},\frac{3}{8},\frac{7}{8},\frac{1}{16},\frac{9}{16}... 21,41,43,81,85,83,87,161,169...
等价的,这个序列的第n个数字是用二进制表示的数字n,倒过来,并写在小数点之后。这对任何基数都是如此。举个例子,要找到上述序列的第六个元素,我们要写 6 = 1 ∗ 2 2 + 1 ∗ 2 1 + 0 ∗ 2 0 = 11 0 2 6=1*2^2+1*2^1+0*2^0=110_2 6=1∗22+1∗21+0∗20=1102,可以倒置并放在小数点之后,得到 0.01 1 2 = 0 ∗ 2 − 1 + 1 ∗ 2 − 2 + 1 ∗ 2 − 3 = 3 8 0.011_2=0*2^{-1}+1*2^{-2}+1*2^{-3}=\frac{3}{8} 0.0112=0∗2−1+1∗2−2+1∗2−3=83。所以上面的序列与 0. 1 2 , 0.0 1 2 , 0.1 1 2 , 0.00 1 2 , 0.10 1 2 , 0.01 1 2 , 0.11 1 2 , 0.000 1 2 , 0.100 1 2 0.1_2,0.01_2,0.11_2,0.001_2,0.101_2,0.011_2,0.111_2,0.0001_2,0.1001_2 0.12,0.01