低差异序列 (low-discrepancy sequences)之Halton序列均匀产生多维随机数的介绍与实现

Halton序列

在统计学中,Halton序列是用于生成空间中的点的序列,如Monte Carlo模拟的数值方法,虽然这些序列是确定性的,但它们的差异性很低,也就是说,在许多方面看起来是随机的。它们在1960年首次提出,是准随机数列的一个例子。它们概括了一维Van der Corput序列

用于生成 R 2 R^2 R2中(0,1)x(0,1)点的Halton序列的例子

Halton数列是以质数为基的确定性方法构造的。举个简单的例子,让我们把Halton序列的一个维度基于2,另一个基于3。为了生成2的序列,我们首先将区间 ( 0 , 1 ) (0,1) (0,1)分成两半,然后分成四分之一、八分之一等,这就产生了
1 2 , 1 4 , 3 4 , 1 8 , 5 8 , 3 8 , 7 8 , 1 16 , 9 16 . . . \frac{1}{2},\frac{1}{4},\frac{3}{4},\frac{1}{8},\frac{5}{8},\frac{3}{8},\frac{7}{8},\frac{1}{16},\frac{9}{16}... 21,41,43,81,85,83,87,161,169...
等价的,这个序列的第n个数字是用二进制表示的数字n,倒过来,并写在小数点之后。这对任何基数都是如此。举个例子,要找到上述序列的第六个元素,我们要写 6 = 1 ∗ 2 2 + 1 ∗ 2 1 + 0 ∗ 2 0 = 11 0 2 6=1*2^2+1*2^1+0*2^0=110_2 6=122+121+020=1102,可以倒置并放在小数点之后,得到 0.01 1 2 = 0 ∗ 2 − 1 + 1 ∗ 2 − 2 + 1 ∗ 2 − 3 = 3 8 0.011_2=0*2^{-1}+1*2^{-2}+1*2^{-3}=\frac{3}{8} 0.0112=021+122+123=83。所以上面的序列与 0. 1 2 , 0.0 1 2 , 0.1 1 2 , 0.00 1 2 , 0.10 1 2 , 0.01 1 2 , 0.11 1 2 , 0.000 1 2 , 0.100 1 2 0.1_2,0.01_2,0.11_2,0.001_2,0.101_2,0.011_2,0.111_2,0.0001_2,0.1001_2 0.12,0.01

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值