poj2185(二维最小覆盖子串问题-KMP)

题意:给出一个二维的字符矩阵,问最小的可覆盖子矩阵大小。


解法:如果是一维的话,在KMP算法的Next数组中,len-Next[len]是一维的覆盖子串,如果len-Next[len]能整除len,则可恰好覆盖(即长度为len-Next[len]的前缀)。

           在二维的情况,每行每列求一个最小公倍数就可以了,并且公倍数不能大于本身总长度。


代码:

/****************************************************
* author:xiefubao
*******************************************************/
#pragma comment(linker, "/STACK:102400000,102400000")
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <vector>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <string.h>

using namespace std;

#define eps 1e-8
typedef long long LL;

char s[11000][100];
int row,col;
int Next[11000];
char tool[11000];

int getNext(char *p)
{
    int len=strlen(p);
    int i=0;int j=Next[0]=-1;
    while(i<len)
    {
        while(j!=-1&&p[i]!=p[j])j=Next[j];
        Next[++i]=++j;
    }
    return len-Next[len];
}
int gcd(int a,int b)
{
    return a==0?b:gcd(b%a,a);
}
int main()
{
  while(scanf("%d%d",&row,&col)==2)
  {
      for(int i=0;i<row;i++)
        scanf("%s",s[i]);
      long long r=1;
      for(int i=0;i<row;i++)
      {
          for(int j=0;j<col;j++)
            tool[j]=s[i][j];
          tool[col]='\0';
          int k=getNext(tool);
          r=k/gcd(r,k)*r;
          if(r>=col)
          {
              r=col;
              break;
          }
      }
      long long c=1;
      for(int i=0;i<col;i++)
      {
          for(int j=0;j<row;j++)
            tool[j]=s[j][i];
          tool[row]='\0';
          int k=getNext(tool);
          c=k/gcd(c,k)*c;
          if(c>=row)
          {
              c=row;
              break;
          }
      }
      cout<<c*r<<'\n';
  }
   return 0;
}
/*
4 11
abcdabcdabc
efghefghefa
abcdabcdabc
efghefghefg
*/

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值