论文阅读:Calibrating Uncertainty for Semi-Supervised Crowd Counting (ICCV 2023)

这是一篇利用不确定度进行半监督人群计数的文章。之前的半监督人群计数有三种做法:

  1. 自监督学习
  2. 人造合成数据
  3. 打伪标签

尽管利用不确定度估计以及在很多CV领域得到应用,但是由于人群分布的不均匀性以及人群的尺度变换、遮挡等因素的影响,不确定度在人群计数中仍然是一个挑战。有一些人群计数通过比较不同模型预测的一致性来估计不确定度(比如利用teacher-student模型),但是这些方法完全依赖于模型在未标注图片上的预测,并不能保证可靠性。在那些所有模型都犯错的区域,不确定度会被低估。

不同于以往的方法,这篇文章:

  1. 使用一个Uncertainty Branch来预测不确定度,另一个Counting Branch来预测人数。为了确保稳定性或者说一致性,它只将student的指数移动平均版本teacher用来过滤伪标签。个人感觉这样更加稳定或者一致
  2. 直接对uncertainty进行监督。这里提出了一个代理函数(surrogate function)计算不确定度的GT,然后使用Ranking loss来监督 。

方法框架如如下:

accumulated spatial matching distance (ASM)

ASM作为uncertainty的GT。本质上是在比较模型预测与GT之间的相似性,这种相似性是通过距离衡量的。在训练到第T个epoch时,ASM为前面所有epoch预测的密度图与GT之间距离的和。作者说这样更加稳定。

 其中M是匹配上的部分,计算的是匹配点之间的距离。H则是未匹配上的,使用了一个惩罚项C,它等于patch的对角线长度。感觉具体实现方式可能是类似于Hungarian匹配。这里同时假定了P中点的数目小于Q。感觉这个有点问题。如果P>Q,那么H会变成一个负数,相当于鼓励模型去预测更多的点。不过这里只用于不确定度估计,或许没什么问题。

Uncertainty Ranking Loss

 这里使用的是排序损失。a是归一化后的ASM,k是模型的预测。这个损失鼓励模型预测的不确定度有正确的相对大小关系。感觉在半监督\弱监督\无监督方面这种弱的限制会挺有用的。对于那些数据不准确的情况下,这种方式应该会很有用。

模型细节

这里用于的uncertainty训练的patch应该是固定的,放在一个patch bank里面。然后模型用的P2PNet。

对于伪标签部分的损失项,前面会有一个系数。

这里比较了两种不确定度图,分别是patch-wise uncertainty和pixel-wise uncertainty

上面的图数值越高代表不确定度越低,是本文提出的;下面的图感觉是数值越低不确定度,是通过直接比较密度图得到的不确定图。上面的图显然更加合理。

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值