深度学习:Normalization

1. Batch Normalization

这是一种正则化方法,优点包括但不限于:

  • 提高收敛速度
  • 缓解过拟合,一定程度上可以起到替代dropout作用
  • 缓解Internal Covariate Shift,即训练时由于所有参数都在更新,后面的层需要不断调整参数来适应前面层的参数变化。

我个人理解,其实就是对卷积层的输出做一个正则化,但是这样可能缺乏灵活性实际效果不好,因此又添加了可学习的两个参数来以一种可学习的方式“恢复”。

公式如下,对于神经网络的第l层,有

Z^{[l]} = W^{[l]}A^{[l-1]}+b^{[l]} \\ \mu = \frac{1}{m}\sum^{m}_{i-1}Z^{[l](i)} \\ \sigma^2 = \frac{1}{m}\sum^{m}_{i-1}(Z^{[l](i)}-\mu)^2 \\ \tilde{Z}^{[l]} = \gamma \frac{Z^{[l]}-\mu}{\sqrt{\sigma^2+\epsilon}} + \beta \\ A^{[l]} = g^{[l]}(\tilde{Z}^{[l]})

其中m代表batch数,γ和β都是可学习的参数。训练时,会去计算每个batch的μ和σ,但在实际测试中中,μ和σ应该用的都是全局的,在训练时会以动量更新等方式进行更新。

BN不适应的场景:

  • Batchsize较小时
  • 训练集和测试集的均值方差较大时
  • 对于RNN,同一batch下的输入数据长短可能不一致,这时无法正确使用BN层,只能使用layer normalization

2. Layer Normalization

模型优化之Layer Normalization - 知乎

BN并不适用于RNN等动态网络和batchsize较小的时候,产生原因均是因为计算归一化统计量时计算的样本数太少。而LN是一个独立于batch size的算法,所以无论样本数多少都不会影响参与LN计算的数据量,从而解决BN的两个问题。

BN和LN其实比较类似,BatchNorm是对一个batch-size样本内的每个特征做归一化,LayerNorm是对每个样本的所有特征做归一化。BN 的转换是针对单个神经元可训练的:不同神经元的输入经过再平移和再缩放后分布在不同的区间;而 LN 对于一整层的神经元训练得到同一个转换:所有的输入都在同一个区间范围内。如果不同输入特征不属于相似的类别(比如颜色和大小),那么 LN 的处理可能会降低模型的表达能力。

3. Instance Normalization

模型优化之Instance Normalization - 知乎

IN在计算归一化统计量时并没有像BN那样跨样本、单通道,也没有像LN那样单样本、跨通道。它是取的单通道,单样本上的数据进行计算

4. Group Normalization

全面解读Group Normalization-(吴育昕-何恺明 ) - 知乎

 

  • 9
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值