题意理解
给你一个整数 n ,表示比赛中的队伍数。比赛遵循一种独特的赛制:
如果当前队伍数是 偶数 ,那么每支队伍都会与另一支队伍配对。总共进行 n / 2 场比赛,且产生 n / 2 支队伍进入下一轮。
如果当前队伍数为 奇数 ,那么将会随机轮空并晋级一支队伍,其余的队伍配对。总共进行 (n - 1) / 2 场比赛,且产生 (n - 1) / 2 + 1 支队伍进入下一轮。
返回在比赛中进行的配对次数,直到决出获胜队伍为止。
问题分析
每一轮次都会进行一次配对,每轮次的配对都会和上一轮次的配对有关系:关系是上一轮配对的数量是下一轮配对的总数,这就形成了递归的结构。
设f(n)是n支队伍的总配对数。那么
当n为奇数时,第一轮配对是(n-1)/2 次,留下一个直接晋级,下一轮配对的数量是(n-1)/2+1 = (n+1)/2。即f(n)=(n-1)/2 + f((n+1)/2);
当n为偶数时,第一轮配对是n/2次,下一轮配对的数量是n/2.即f(n)=n/2+f(n/2);
当n=0、1时,不需要配对,直接决出冠军。
其他
https://leetcode-cn.com/problems/count-of-matches-in-tournament/
链接
class Solution {
public:
int numberOfMatches(int n) {
return helper(n);
}
int helper(int n) {
if (n == 0 || n == 1) return 0;
if (n % 2 == 0) {
return n / 2 + helper(n / 2);
} else {
return (n - 1) / 2 + helper((n + 1) / 2);
}
return 0;
}
};