陈省身的一些讲话

 陈省身:《二十一世纪的数学》

Weiping Zhang 于1992年第3期 发表在 《中国数学会通讯》

(1992年5月31日在“纪念国家自然科学基金十周年学术报告会”上的讲话)

            今天我很荣幸能有这个机会同大家讲话。我先讲两个故事。

            我们都知道欧几里得(Euclid)的《几何原本》,这是一本数学方面的论著。完成于2000多年以前。它对于人类是一个很伟大的贡献。书中包括了分析和代数,不限于几何,目的是用推理的方法得到几何的结论。其中,第13章的内容讲的是正多面体的面数。正多面体就是这样一个多面体:它的面互相重合,同时通过一个顶点和每面的边数是相同的。正多面体在平面上的情形是正多边形。正多边形很多,有正三角形、正四边形……等等。当时发现,到了空间,讨论正多面体就不这么简单了。空间的正多面体少得多,一共有五种正多面体:四面体、六面体、八面体、十二面体,最大的一个是正二十面体。有个朋友写了一本书,把这些漂亮的几何图形都收进去了,我这里有一份彩色的拷贝。

            有些人可能会想,数学家们一天到晚没有事情可做,无中生有,搞这些多面体有什么意思?不过我跟张存浩先生讲,现在化学里的钛化合物就跟正多面体有关系。这就是说,经过2000年之后,正多面体居然会在化学里有用,有些数学家正在研究正多体和分子结构间的关系。我们也知道,生物学上的病毒(Virose)也具有正多面体的形状。这表明,当年数学家的一种“空想”,经历了这么长的时间之后,竟然是很“实用”的。

            我再讲一个许多人都在讲的故事。有两个中学时代的朋友,多年未见了,一天忽然碰到。甲对乙说:“你这些年在做什么事?”乙说:“我在研究人口问题”。甲当然很想看看老朋友的工作,于是拿来乙的人口学论文一读,发现论文出现很多π。他觉得好奇怪:π是圆周率,圆周与直径之比,这怎么会和人口扯上关系?这个问题与上面的正多面体问题说明了同样的一点,即基础科学,特别是纯粹数学很难说将来会在什么时候会有用,并且起到很重要的作用。如果要求基础科学立刻就要有应用,那是太短视了。

            数学家经常在家里思想问题,想出来的东西为什么会有用?我想,主要的原因就是它的基础非常简单,又十分坚固,它的结果是根据逻辑推理得出来的,所以完全可靠。逻辑推理比实验证实所获的结果要更为可靠些。数学由于它的逻辑可靠性,因而是一门有坚实根底的学问,这是数学有用的一种解释。

            还有一个问题是,为什么许多不同的学科往往会用到相同的数学?这也是弄不清楚的问题。一种解释是好的数学太少。天下的高山就那么几座,天下漂亮的东西总是不太多。你到了北京,去玩漂亮的地方,无非是长城,天坛,故宫,总之是不太多。数学要讲应用,就往往归结到那几种特别好的数学,这种好数学也不多。

            我的题目是讲21世纪的数学,也就是要讲中国的数学该怎么发展,如何使中国数学在21世纪占有若干方面的优势。这个办法说来很简单,就是要培养人才,找有能力的人来做数学。找到优秀的年轻人在数学上获得发展。具体一些讲,就是要在国内办十个够世界水平的第一流的数学研究院。中国这么大,不仅北京要有,别的地方也应该办,一般说来,也许应该办十个。

            至于什么叫够水平,第一流,这并没有严格的定义。我只能说南开数学所不够水平,南开要达到世界水平还需要很多的努力。

            中国科学的根子必须在中国。中国科学技术在本土上生根,然后才能长上去。可是要请有能力的人来做数学很不容易。我从1984年开始组建南开数学所。开始想请有能力的人来所工作就是了。可是由于种种原因,很难做到这一点。我们办第一流的研究所就是要有第一流的数学家。有了第一流的数学家,房子破一点,设备差一点,书也找不到,研究所仍是第一流。不然的话,房子造得很漂亮,书很多,也有很贵的计算机,如果没有人来做第一流的工作,又有什么用处?我看到这种情形,就改变想法,努力训练自己的年轻人,培养自己的数学家,送他们出国学习,到世界各地,请最好的数学家给予指导。

            我很高兴告诉大家,这些措施已经开始出现成效。比方说贺正需,他到美国加州大学圣地亚哥分校跟M.弗里德曼学,弗里德曼得过菲尔兹奖,是年轻的领袖人物。他亲自对我说,贺正需是他最好的学生。贺正需现在在普林斯顿。再比如,王蜀光。他是王宽诚基金会资助出国的,在选拔考试中获第一名。我介绍他到英国牛津大学,跟S.唐纳森。唐纳森是英国当代最不得了的年轻数学家。我想他大概还不到30岁,现已成为牛津大学教授。王蜀光一年前已完成了他的博士论文。另一位王荣光(不是兄弟)也是王宽诚基金会资助出国的,他到美国哈佛大学跟C.T aubes读博士学位,今年也做完了论文。还有一位是张伟平,他的老师是D.别斯缪(Bismut),是法国最有名的年轻数学家,(另一位是A.Connes)。张伟平在巴黎只用两年时间完成了博士论文,现在在巴黎的 Institut.des Hautes Etudes做博士后。我还可以提到一些人,这里不能一一列举了。

            上述四人中,张伟平已答应明年回国,回到南开来。明年张伟平如果回来的话,我希望政府能给一些方便,像这样的人才,希望能留住他。留学生能否回来,主要是国内的环境,待遇问题,对有成就的科学家要给予相应的待遇,今天我不准备谈这个问题。我只是说,世界上的人才应该是流动的,欧洲回来的人可再到美国去,当前政策比较宽松,要出国也容易。所以必须想法子留住人,有适当的政策。当然我只会处理数学,政策问题不是我所能处理的。

            下面谈谈主流数学与非主流数学的问题。大家知道,数学有很多特点。比如做数学不需要很多设备,现在有电子通讯(E-Mail),要的资料很容易拿到。做数学是个人的学问,不象别的学科,必须依赖于设备,大家争分夺秒在一些最主要的方向上工作,在主流方向作出你自己的贡献。而数学则不同。由于数学的方向很多,又是个人学问,不一定大家都集中做主流数学。我倒觉得可以鼓励人们不一定在主流数学上做。常有的情形是现在不是主流,过几年却成为主流了。这里我想讲讲我个人的经验。1943年,我在西南联大教书,杨振宁先生在学校里做研究生。那年我应邀从昆明到普林斯顿高等研究院去,杨先生后来在那里做教授。靠近普林斯顿有一个小城叫 New Brunswick,是新泽西州立大学所在地。我8月到普林斯顿不久,就在New Brunswick参加美国数学会的暑期年会。由于近,我也去听听演讲,会会朋友。有一次我和一位美国非常有地位的数学家聊天,他问我做什么,我说微分几何,他立刻说,“It is dead(它已死了)”。这是 1943年的事,但战后的情形是微分几何成了主流数学。

            因此,我觉得做数学的人,有可能找到现在并非主流,但很有意义、将来很有希望的方向。主流方向上集中了世界上许多优秀人物,投入了大量的经费,你抢不过他们,赶不上,不如做其它同样很有意义的工作。我希望中国数学在某些方面能够生根,搞得特别好,具有自己的特色。这在历史上也有先例。例如:第二次世界大战以前,波兰就搞逻辑、点集拓扑。他们根据一些简单公设推出结论,成就不小。另外如芬兰,在复变函数论上取得成功,一直到现在。例如在拟共形映照(Quasi Conformal Mapping)上的推广一直在世界上领先。因为他们做的工作,别的国家不做,他们就拥有该领域内世界上最强的人物,我还可以举出更多的例子。

            我刚才提到要办十个够水平的研究院,怎样才会够水平呢?

            第一,应当开一些基本的先进课程。学生来了,要给他们基本训练,就要为他们开高水平的课。所谓的基本训练有两方面。一是培养推理能力,一个学生应该知道什么是正确的推理,什么是不正确的推理。你必须保证每步都正确。不能急于得结果就马马虎虎,最后一定出毛病。二是要知道一些数学,对整个数学有个判断。从前是分析有关的学科较重要。20世纪以来是代数较时髦,群论、群表示论,后来是拓扑学等等。总之,好的研究中心应该能开这些基本课程。如不每年开,也可以两年开一次。在我看来,中国要做到这一点是不困难的。无非是两条:一是讲授研究院的某些课程,给予奖金。二是另外也可请几个国外的人来教。请的人如果不是最活跃的,甚至请退休的人来,花费并不大,他们在国外已有退休金,请到中国来只要安排好生活,少量的旅游也就可以了。这样,数学研究院会有一个完整的课程系统。

            第二,我想必须要有好的学生。我们每年派去参加国际奥林匹克数学竞赛的中学生都很不错。虽然中学里数学念得好将来不一定都研究数学,不过希望有一部分人搞数学,而且能有成就。昨天,我和在北京的一些数学竞赛中获奖的学生见面,谈了话。我对他们说,搞数学的人将来会有大的前途,十年、二十年之后,世界上一定会缺乏数学人才。现在的年轻人不愿念数学,势必造成人才短缺。学生不想念数学也难怪。因为数学很难,又没有把握。苦读多年之后,往往离成为数学家还很远。同时,又有许多因素在争夺数学家,例如计算机。做一个好的计算机软件,需要很高的才能,很不容易。不过它与数学相比,需要的准备知识很少。搞数学的人不知要念多少书,好象一直念不完。这样,有能力的人就转到计算机领域去了。也有一些数学博士,毕业后到股票市场做生意。例如预测股票市场的变化,写个计算机程序,以供决策。这样做,虽然还是别人的雇员,并非自己当老板,但这比大学教授的薪水高得多了。因此,数学人才的流失,是世界性的问题。

            相比之下,中国的情况反而较为乐观,因为中国的人才多,流失一些还可以再培养。流失的人如真能赚钱,发财之后会回来帮助盖数学楼。总之,我们应取一个态度:中国变成一个输送数学家的工厂。出去的人希望能回来,如果不回来,建议我们仍然继续送。中国有的是人才,送出去一部分在世界上发挥影响也是值得的。我们要做的事是花不多的钱,打好基础,开出好的课,基础搞得好了,至于出去的人回来不回来可以变得次要些。这是我的初步想法。

            比方说,参加国际奥林匹克数学竞赛的人,数学都是很好的,如果他们进大学数学系,我建议立刻给奖学金。这点钱恐怕很有限,但效果很大,对别人也是一种鼓励。中国的孩子比较听家长、老师的话。孩子有数学才能,经过家长、老师一劝,他就念数学了。

            对好的数学系学生来说,到国外去只是时间问题,你只要在国内把数学做好,出国很容易。国内做得很好的话,到了国外不必做研究生,可以直接当教授。中国已有条件产生第一流的数学家,大家要有信心。

            培养学生我主张流动。19世纪的德国数学,当然是世界第一。德国的大学生可以到任何大学去注册。这学期在柏林听Weierstrass的课,下学期到哥廷根听Schwarz的课,随便流动。教授也可以流动,例如柏林大学已有M.普朗克、A.爱因斯坦,一个理论物理学家在柏林大学自然没有发展的希望,就不妨到别的学校去创业。我希望中国的学生、教授都能流动。教授可以到别的学校去教课,教上半年。各个数学研究院的教授也能互相交换。

            我想再稍微讲点数学。刚才说过,选择数学研究方向并不一定要跟主流,可以选自己特别喜欢的那些分支。不过,一个数学家应当了解什么是好的数学,什么是不好的或不大好的数学。有些数学是具有开创性的,有发展的,这就是好的数学。还有一些数学也蛮有意思,但渐渐变成一种游戏了。所以选择好的数学研究方向是很要紧的。

            让我举例来谈谈。大家是否知道有个拿破仑定理?这个定理也许和拿破仑并没有关系,却也蛮有意思。定理是说任给一个三角形,各边上各作等边三角形,然后将这三个等边三角形的重心联起来,又是一个等边三角形。各边上的等边三角形也可朝里面做,得到两个解,等等,这个数学就不是好的数学。因为它难有进一步的发展。当然,如果你感到累了,愿意想想这些问题,也蛮有意思,这好象一种游戏。那么什么是好的数学?比方说解方程就是。搞数学都要解方程。

            一次方程易解。二次方程就不同。x2-1=0有实数解。x2+1=0就没有实数解。后来就加进复数,讨论方程的复数解。大家知道的代数基本定理就是n次代数方程必有复数解。这一问题有长的历史。当年的有名数学家欧拉(1707-1783)就考虑过这个问题。欧拉名望很高,但当时没有教授的职位,生活上也很困难。那时的德国皇帝认为皇宫中一定要有世界上最好的数学家。所以就把欧拉请去了。欧拉就曾研究过代数基本定理,结果一直没有证出来。后来还是高斯(1771-1855)发现了复数与拓扑有关系,有了新的理解。因为模等于1的复数表示一个圆周,在这圆周上就会有很多花样。第一个会证明代数基本定理的是高斯,而且给了不止一个证明。

            如果从解f(x)=0到f(x,y)=0,那就进到研究曲线,当然也可能没有解,一个零点也没有。于是花样就来了,假使你在f(x,y)=0中把x,y都理解为复数,则两个复数相当于四维实空间,这就很麻烦,出现了复变函数论中的黎曼曲面。你要有黎曼曲面来表示这个函数,求解原来的方程f(x,y)=0,那就要用很多的数学知识。其中最要紧的概念是亏格(Genus)g。你把f(x,y)=0的解看成曲面之后,那么曲面有多少个圈,球面、环面等等的花样就很多,都和g有关。

            此外,你也可以有另外的花样。比如假定f(x,y)=0的系数都是整数,你也可以讨论这一方程的整数解,这个问题就很难了。直到前几年才发现这一方程是否有整数解和亏格g有密切关系。当g=0时,有无穷多个整数解。g=1 则有些特别的性质。当g>1时,德国的伐尔廷斯(Faltings)在1984-1985年间证明了f(x,y)=0的整数解至多为有限个。这一结果和费马定理有关。那是说xn+yn=zn(n>3)没有正整数解。这还没有解决费马问题,但是前进了一大步。

            确实,数学可以引导出很深的观念。数学中我愿把数论看作应用数学。数论就是把数学应用于整数性质的研究。我想数学中有两个很重要的数学部门,一个是数论,另一个是理论物理。理论物理也是用很多数学的部门。

            在这一小时里我无法讲很多的数学。我还想讲一点,比方说最近一个时期最热闹的数学是什么,即当前的主流数学,刚才我说过我并不喜欢大家都去搞主流数学,不过主流数学毕竟是重要的。

            所谓主流数学,是指一个伟大的数学贡献,深刻的定理,含义很广证明也很不简单。如果在当前选一个这样的贡献,我想那就是Atiyah-Singer指数定理。Atiyah是英国皇家学会会长。上个月他来北京,还作过报告。这个指数定理可看成是上面所谈问题的近代发展,即将代数方程、黎曼曲面、亏格理论等等从低维推广到高维和无穷维。

            因此,我觉得数学研究不但是很深很难很强,而且做到一定的地步仍然维持一个整体,到现在为止,数学没有分裂为好几块,依旧是完整的。尽管现代数学的研究范围在不断扩大,有些观念看来比较次要,慢慢就被丢掉了,但基本的观念始终在维持着。

            我想今天就这样结束,谢谢大家。(根据录音整理)

=========================================================
                      中国的数学—几件数学新闻和对于中国数学的一些看法

陈省身

庆祝自然科学基金制设立15周年和国家自然科学基金委员会成立10周年的讲演
(Machematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, CA94720, USA; 南开大学数学研究所,天津300071)

张存浩先生要我讲点数学,这么短的时间,而数学这么大,只好举几个要点谈谈。数学是什么?数学是根据某些假设,用逻辑的推理得到结论,因为用这么简单的方法,所以数学是一门坚固的科学,它得到的结论是很有效的。这样的结论自然 对学问的各方面都很有应用,不过有一点很奇怪的,就是这种应用的范围非常大。最初你用几个数或画几个图就得到的一些结论,而由此引起的发展却常常令人难以想象。在这个发展过程中,我认为不仅在数学上最重要,而且在人类文化史上也非常突出的就是Euclid在《几何原本》。这是第一本系统性的书,主要的目的是研究空间的性质。这些性质都可以从很简单的公理用逻辑的推理得到。这是一本关于整个数学的书,不仅仅限于几何学。例如,Euclid书上首先证明素数的个数是无穷的,这便是一个算术的结论。随着推理的复杂化,便有许多“深刻”的定理,需要很长的证明。例如,有些解析数论定理的证明,便需几十条引理。最初,用简单的方法证明几个结果,大家很欣赏,也很重要。后来方法发展了,便产生很复杂的推理,有些定理需要几十页才能证明。现在有的结果的证明甚至上百页,上千页。看到这么复杂的证明,我们固然惊叹某些数学家高超的技巧和深厚的功力,但心中难免产生一些疑问,甚或有些无所适从的感觉。所以我想,日后数学的重要进展,在于引进观念,使问题简化。

先讲讲有限单群的问题。

1. 有限单群
  我们知道,数学的发展中有一个基本观念—群。群也是数学之中各方面的最基本的观念。怎样研究群的结构呢?最简单的方法是讨论它的子群,再由小的群的结构慢慢构造大一些的群。群中最重要的一种群是有限群,而有限群是一个难极了的题目,需要有特别的方法,特别的观念去研究。

命G为群,g∈G为一子群,如对任何g∈G,gHg -1∈H,则称H为正规的(normal)。正规子群存在,可使G的研究变为子群H及商群G/H的研究。这样就有一个很自然的问题,有哪些有限的单群(simple group)。单群除了它自己和单位元(identity)之外,没有其他的非平凡的正规子群(normal subgroup)。数学上称其为简单群,其实一点也不简单。有限群论的一个深刻的定理是Fei-Thompson定理:非交换单群的阶(数)(即群中元素的个数)是偶数。更不寻常的是除了某些大类(素数阶循环群Zp,交错群An(n>=5),Lie型单群)外,后来发现了26个零零碎碎的有限单群(散在单群,离散单群),现在知道,最大的散在单群的阶是
41 20 9 6 2 3 54 2 3 5 7 11 13 17 19 23 29 31 41 47 59 71 =808,017..=1054
这是很大的单群,由B.Fisher和R.L.Griess两位数学家所发现,数学家称它为魔群(怪物,Monster)。单群的权威数学家D.Gorenstein相信有限单群都在这里了,这当然是数学上一个很好的结果。把单群都确定了,就像化学家把元素都确定了,物理学家把核子的结构都确定了一样。可这里有个缺点,Gorenstein并未将证明写出来。他讲若将证明写出来至少有1000页,而1000页的证明无论如何很容易有错误。可是Gorenstein又说,不要紧,若有错误,这个错误一定可以补救。你相信不相信?数学界有些人怀疑这样的证明是否必要。现在计算机的出现,许多问题可以验证到很大的数,是否还需要严格的证明,已变成数学上一个有争论的问题。这个争论看来一时无法解决。段学复先生是我的老朋友,是有限群论的专家,也许我们可以问一下他的意见。我个人觉得这个问题很难回答。不过数学家有个自由,当你不能做或不喜欢做一个问题时,你完全不必投入,你只需做一些你能做或喜欢做的问题。

2. 四色问题
  把地图着色,使得邻国有不同的颜色,需要几种颜色?经验告诉我们,四色够了。但是严格的证明极难。这就是有各的四色问题。地图不一定在球面上,也可在亏格高的的曲面上(一个亏格高为g的曲面在拓扑上讲是球面加g个把手;亏格为1的曲面可设想为环面)。可惊奇的是,这个着色问题,对于g>=1的曲面完全解决了。可以证明:有整数χ(g),满足条件:在亏格为g的曲面上任何地图都可用χ(g)种颜色着色,使邻国有不同颜色,且有地图至少需要χ(g)种颜色。这个数在g>=1时可以完全确定。我们知道χ(1)=7,即环面上的地图可用七色着色,四 色不够。

令人费解的是,证明地球上四色定理,困难多了。现有的证明,需要计算机的帮助,与传统的证明不同。而我们觉得最简单的情况,即我们住的地球球面上的着色问题反而特别复杂。把扩充的问题解决了,得到了很有意思的结论。但是回到基本问题,反而更难。这种现象不止这一个,还有很多,一个例子是所谓的低维拓扑,即推广的问题更简单,而本身核心的问题反而不易克服,这确是数学神秘性的一面。

3. 椭圆曲线
  最近的数学进展,最受人注意的结果就是Fermat大定理的证明。Fermat大定理说:方程式xn+yn=zn ,n>2没有非平凡的整数解(即xyz≠0)。这个传说了300年的结果的证明,最近由 Princeton大学的教授Andrew J.Wiles(英国数学家)给出。但证明中缺一段,是由他的学生Richard Tarlor补充的。因此,Fermat定理现在已经有了一个完全的证明。整个文章发表在最近一期的“Annals of Mathematics"(Prinston大学杂志,1996,第一期)整个一期登的是Wiles与Taylor的论文,证明Fermat定理 (Wiles 为此同Robert Langlands 获得了1996年的Wolf奖与National Academy Science Award in Mathematics)。

有意思的是,证明这个定理的关键是椭圆曲线。这是代数数论的一个分支。有以下一则故事。英国的大数学家G.H.Hardy(1877-1947)有一天去医院探望他的朋友,印度天才数学家S.A.Ramanujan(1887-1920).Hardy 的汽车号是1729。他向 Ramanujan说,这个数目没有意思。Ramanujan说,不然,这是可以用两种不同方法写为2个立方之和的最小的数,如1729=13+123=93+103。这结果可用椭圆曲线论来证明。我们知道,要找一个一般方程的解不容易的,而要找一个系数为整数的多项式方程P(x,y)=0(传统上叫Diophantine方程)的整数解更困难。因为普通的解不会是整数,这是数论中的一个主要问题。

需要说明的,在Wiles完成这个证明之前,我有一位在Berkley的朋友Kenneth A.Ribet,他有重要的贡献。他证明了一日本数学家Yutaka Taniyama的某一个关于椭圆曲线的假设包含Fermat定理。于是可将Fermat定理变为一个关于椭圆曲线的定理。Wiles根据Ribet的结果又继续经过了许多步骤,以至达到最后的证明。即在复平面内得到曲线。由复变函数论知道,复平面内的曲线就成为一个Riemann曲面。Riemann曲面为定向曲面,它可以是球,也可以是球加上好多把手。其中有一个最简单的情形,就是一个球加上一个把手,即一个环面。环面是个群,且为可交换群。所谓椭圆曲线,就是把这个曲线看成复平面内亏格(genus)等于1的复曲线。亏格等于1的曲线有一个非常深刻而巧妙的性质。即它上面的点有一个可交换群的构造。两个点可以加起来,且有群的性质。这是很重要的性质。椭圆曲线与椭圆无关。原因是,若所有曲线的亏格大于1,相当于Riemann曲面有一个Poincare度量,它的曲率等于1,所有曲面若其曲率等于—1,则叫做双曲的。亏格等于1的叫椭圆。亏格等于0的叫抛物线。椭圆曲线的研究是数论中非常重要,非常有意思的方面。最近一期的科学杂志(Science),有位先生写了一篇关于椭圆曲线的文章。椭圆曲线在电报的密码上有应用。而中国也有很多人在做代数几何与代数数论方面的工作。最近在黄山有一个国际性的,题为“代数几何与代数数论”的会议,由冯克勤先生主持。

从这个定理我们应认识到:高深的数学是必要的。Fermat定理的结论虽然简单,但它蕴藏着许多数学的关系,远远超出结论中的数学观念。这些关系日新月异,十分神妙,学问之奥,令人拜赏。我相信,Fermat定理不能用初等方法证明,这种努力是徒劳的。数学是一个整体,一定要吸取几千年所有的进步。

4. 拓扑与量子场论
  1995年初的一天晚上,我在家看晚间电视新闻。突然,我听到自己的名字,大吃一惊。 原来加利福尼亚发一种彩票,头彩300万美元,若无人中彩的话,可以积累到下一次抽彩。我从前的一个学生,名Robert Uomini,中了头彩美金2200万元。他曾选过我的本科课,当时还对微分几何很有兴趣。他很念旧,以100万美元捐赠加州大学,设立“陈省身讲座”。学校决定,以此讲座邀请名学者为访问教授。第一位应邀的为英国数学家Sir Michael Atiyah。他到中国不止一次。他是英国影响最大的数学家,剑桥大学三一学院的院长,则卸任的英国皇家协会会长。Atiyah很会讲学,也很博学,他的报告有很大的吸引力。他作了八讲,讲题是“拓扑与量子场论”。

这是当前一个热门的课题,把高深的数学和物理联系起来了,导出了深刻的结果。现在拓扑在物理上有非常重要的应用,这跟杨振宁的Yang-Mills场方程有很密切的关系。杨先生喜欢说,你们数学家写的东西,我们学物理的人看不懂,等于另外一种文字。我想我们搞数学的人有责任把我们的结果,写成不是本行的人也至少知道你讲的是怎么一回事。物理学,量子力学,尤其是量子场论与数学的关系其实并不复杂。说到数学的应用,讲一下矢量空间,Euclid空间就是一个矢量空间。再进一步,多个矢量空间构成一个拓扑空间,这就是所谓的矢量丛,即一束这样的空间。这样的空间有一些简单的性质。比如说,局部来讲,这种矢量空间是一个chart,是一个集,可用坐标来表示。结果发现矢量丛这种空间在物理上很有用。物理学的一个基本观念是“场”。最简单的场是电磁场,尤为近代生活的一部分。电磁场的“势”适合Maxwell方程。Hermann Weyl第一个看出这个势不是一个确定的函数。它可以变化。这在物理上叫做规范(gauge,不完全确定的,可以变化的),这就是物理上规范场论的第一个情形。

物理上有4种场:电磁场,引力场,强作用场和弱作用场。现在知道,这些场都是规范场。即数学系上是一束矢量空间,用一个线性群来缝住的。电磁场的重要推广,是Yang-Mills的规范场论。杨先生的伟大贡献就是在SU(2)(special unitary group in two variables)情形下得到物理意义明确的规范场,即同位旋(isospin)规范场,这种将数学现象给以物理的解释,是件了不起的工作,因为以往的Maxwell 场论是一个可交换的群。现在变为在SU(2),群是不能交换的。而实际上,物理中找到了这样的场,这是科学上一个伟大的发展。数学家可以自豪的是,物理学家所需的几何观念和工 具,在数学上已经发展了。

杨先生之所以有这么大的成就,其中一个很重要的,很了不起的原因是除了物理的感觉以外,他有很坚实的数学基础。他能够在这大堆复杂的方程中看出某些规律,它们具有某种基本的数学性质。Yang-Mills方程的数学基础是纤维丛。这种观念Dirac就曾有过。Dirac的一篇基本论文中就讲到这种数学。但Dirac没有数学的工具。所以他在讲这种观念时,不但数学家不懂,就连物理学家也不懂。不过,其中有一个到现在还未解决的物理含义,即有否磁单极(magnetic monople)。可能会有。就是说,有否这样的场,它的曲率不等于0(曲率是度量场的复杂性的)?物理上要是发现了这种场,会是件不得了的事实。这些观念的数学不简单。

Yang-Mills方程反过来影响到拓扑。现在的基础数学中,所谓低维拓扑(二维,三维,四维)非常受人注意。因为物理空间是四维空间。而四维空间有许多奇妙的性质。我们知道代数几何,曲线论,复变函数论等许多基础数学理论是二维拓扑。而现在必到四维,四维有spinor理论,有quantum结构。四维与物理更接近。它的结构是Lorentz结构,而不是Riemann结构。这方面有很多工作可做。根据Yang-Mills方程,对于四维拓扑,Atiyah的学生英国数学家Simon Donaldson有很重要的贡献。其中有一个结果就是利用Yang-Mills方程证明四维Euclid空间R4有无数微分结构与其标准结构不同。这一结果最近又由Seiberg-Witten的新方程大大的简化了。这是最近拓扑在微分几何,理论物理应用方面最引人注意的进展。

二维流形的发展有一段光荣的历史,牵涉到许多深刻的数学。可以断言,三维,四维流形将更为丰富和神妙。

5. 球装问题(Sphere Packing)
  如何把一定的空间装得最紧,显然是一个实际而重要的问题。项武义教授最近在这方面做了很重要的工作。这里先介绍一个有关的问题:围着一个球,可以放几个同样大小的球?我们不妨假定球的半径为一,即单位球。在平面情形,绕一单位圆我们显然可以放6个单位圆。而在三维空间的情况则更为复杂。如果把单位球绕单位球相切,不难证明,12个球是放得进的。这时虽然还剩下许多空间,但不可能放进第13个球。要证明这一结论并不容易。当年Newton与Gregory有个讨论。Newton 说第13个球装不进,Gregory说也许可以。这个争论长期悬而未决。一直到1953年,K.Schutte和B.L.van der Waerden才给了一个证明。这个证明是很复杂的。
  一个更自然的问题是怎样把一个立方体空间用大小相同的球装得最紧。衡量装得是否紧凑的尺度是密度(density),即所装的球的总的体积和立方体空间的体积的比例。Kepler于1611年提出了一个猜想:他认为立方体的球装的密度不会大于π/(18^1/2)。项武义说他证明了这个猜想。可是有人(Gabor Fejes Toth)认为他的证明不完全,甚至有人(Thomas L.Hales)说是错误的。"Mathematical Intelligencer"这个杂 志上(1995年),有关于这一问题的讨论,项武义有个答复。Toth是匈牙利数学家,三代人搞同一个课题。匈牙利数学很发达,在首都布达佩斯有个200多人的几何研究所。我不知道几何中是否有这么多重要的问题需要这么多人去做。最年轻的Toth在“Mathematics Reviews"中有篇关于项的文章的评论。他说项的文章有些定理没有详细的证明。天下的事情就是这样。做重要工作有争议的时候,便产生一些有趣的现象。不过他觉得项的意思是对的。不但项的意思是对的,甚至表示这个意思他从前也有。最近项武义把他认为没有的证明都有写出来了。

最主要的,我要跟大家说的是立体几何在数学中是很重要而因难的部分。即使平面几何也可能很难。到了立体时,则更为复杂。近年来对碳60(C60)的研究显示了几何在化学中的应用。多面体图形的几何性质对固态物理也有重大的作用。球装不过是立体几何的一个 问题。立体几何是大有前途的。
 

(斑竹评语:这个问题很有意思,有一个网站有更多的球装内容,还有覆盖问题等等,并有大量的图形,非常值得一看:
                           http://www.stetson.edu/~efriedma/packing.html)

6. Finsler几何
  最近经我鼓励,Finsler几何有重大发展,作简要报告如下:在(x,y)平面上设积分s=∫ab F(x,y,dy/dx)dx,其中y是x的未知函数。求这个积分的极小值,就是第一个变分学的问题。称积分s为弧长,把观念几何化,即得Finsler几何。Gauss看出,在特别情形:F2=E(x,y)+F(x,y)y' 2+G(x,y)y' 2,y'=dy/dx,其中E,F,G为x,y的函数,几何性质特别简单。1854年,Riemann的讲演讨论了整个情形,创立了Riemann-Finsler几何。百余年来,Riemann几何在物理中有重要的应用,而整体Riemann几何的发展更是近代数学的核心部分。

Riemann的几何基础包含Finsler几何。我们最近几年的工作,把Riemann几何的发展,局部的和整体的,完全推广到Finsler几何,而且很简单。因此,我觉得以后的微分几何课或Riemann几何课都应该讲一般情形。最近有几个拓扑问题,最主要的一个是Riemann流形的一个重要性质,即英国数学家Hodge的调和积分。现在有2个年轻人,一个是David Bao,另一个是他的美国学生,把这个Hodge的调和积分推广到了Finsler情 形。这将是微分几何的一块新园地,预料前景无限。1995年夏在美国西雅图有一Finsler几何的国际会议。其论文集已于今年由美国数学会出版。Finsler几何在1900年有名的Hilbert演讲中是第23个问题。

7. 中国的数学
  数学研究的最高标准是创造性:要达到前人未到的境界,要找着最深刻的关键。从另一点看,数学的范围,是无垠的。我愿借此机会介绍一下科学出版社从俄文翻译的《数学百科全书》,全书5大卷,每卷约千页。中国能出版这样的巨著,即是翻译,也是一项可喜的成就。这是一部十分完备的百科全书,值得赞扬的。对着如此的学问大海,入门必须领导,便需要权威性的学校和研究所。数学是活的,不断有杰出的贡献,令人赞赏佩服。但一个国家,比较可以集中某些方面,不必完全赶时髦。当年芬兰的复变函数论,波兰的纯粹数学,都是专精一门而有成就的例子。中国应该发展实力较强的方面。但由百科全书的例子,可看出中国的数学是全面的。这是一个可喜的现象。中国的财富在“人民”。中国的数学政策,除了鼓励尖端的研究以外,应该用来提高一般的数学水平。我有两个建议:

(1)设立数学讲座,待遇从优,其资格可能是对数学发展有重大贡献的人;

(2)设立新的数学中心,似乎成都,西安,广州都是可能的地点。中心应有相当的经费,部分可由地方负担,或私人筹措。

近年因为国家开放,年轻人都想经商赚钱,当然国家社会需要这样的人。但是做科学的乐趣是一般人不能理解的。在科学上做了基本的贡献,有历史的意义。我想对于许多人,这是一项了不得的成就。在岗位上专心学问,提携后进,“得天下之英才而教育之”,应该是十分愉快的事情。 一个实际的问题,是个人应否读数学。Hardy 说,一个条件是看你是否比老师强。这也许太强一些。我想学习应不觉困难,读名著能很快与作者联系,都是测验。数学是小科学,可以关起门来做。在一个多面竞争的社会中,是一项有优点的职业,即使你有若干能力。中国的数学有相当水平。从前一个数学家的最高标准,是从国外名大学获得博士学位。我们国家现在所需做的,是充实各大学的研究院,充实博士学位,人才由自己训练。

致谢本文承葛墨林,陈永川教授帮助整理,特此致谢。
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值