偏微分方程基本概念

一般形式
D ( x , y , . . . , u , ∂ u ∂ x . . . ∂ 2 u ∂ x 2 , ∂ 2 u ∂ x ∂ y , . . . . ) = 0 D(x,y,...,u, \frac {\partial u}{\partial x}...\frac {\partial ^2u}{\partial x^2},\frac {\partial^2 u}{\partial x \partial y},....)=0 D(x,y,...,u,xu...x22u,xy2u,....)=0

自变量 x y
未知量 U
阶数 U的最高次偏导数是几阶导
次数 最高阶的是幂次
线性 各阶导数都是一次
拟线性 不是线性 但是最高阶都是一次
齐次 不带u及其导数的项为0

举例: ∂ u ∂ x + u ∂ u ∂ y = x 2 \frac {\partial u}{\partial x}+u\frac {\partial u}{\partial y}=x^2 xu+uyu=x2
二阶一次拟线性非齐次

二阶线性
Laplace方程 Δ u = 0 \Delta u=0 Δu=0
Poisson方程 Δ u = f ( x , y ) \Delta u=f(x,y) Δu=f(x,y)
热传导方程 Δ u = u t \Delta u=u_t Δu=ut
波动方程 Δ u = u t t \Delta u=u_{tt} Δu=utt

任意二阶线性偏微分方程可以化为三类 elliptic(椭圆) parabolic(抛物)hyperbolic(双曲)

边界条件
Dirichlet: u = g , o n Γ N u=g,on \Gamma_N u=g,onΓN
Neumann: ∇ u ⋅ n ⃗ = p , o n Γ N \nabla u·\vec{n}=p,on \Gamma_N un =p,onΓN
Robin: ∇ u ⋅ n ⃗ + r u = q , o n Γ N \nabla u·\vec{n}+ru=q,on \Gamma_N un +ru=q,onΓN

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值