方程:含有未知量的等式称为方程
方程包括代数方程、函数方程、微分方程
微分方程包括常微分方程、偏微分方程
微分方程:含有参数、未知函数和未知函数的导数的方程称为微分方程,例如
微分方程的阶:微分方程中出现的未知函数最高阶导数的阶数称为微分方程的阶
一阶常微分方程的一般形式:
一阶常微分方程的标准形式:
对于高阶微分方程可以引入新的未知函数,把它化为多个一阶微分方程组
微分方程的解:凡代入微分方程后使其成为恒等式的函数都称为该微分方程的解
微分方程的通解:若微分方程的解中含有任意常数的个数与方程的阶数相同,且任意常数之间不能合并,则称此解为该微分方程的通解
微分方程的特解:当通解中的各任意常数都取特定值时所得到的解称为方程的特解
定解问题:针对实际问题求出满足某种指定条件的解来,求这种解的问题称为定解问题
常微分方程:未知函数是一元函数的微分方程称为常微分方程,例如
偏微分方程:未知函数是多元函数的微分方程称为偏微分方程,例如,其中F是
及
的有限多个偏导数的已知函数
Laplace方程
常微分方程课程及理论研究的是少数特殊类型的常微分方程的共性
偏微分方程课程及理论研究的是少数特殊类型的偏微分方程的共性
线性方程的特征:叠加原理
线性偏微分方程:关于未知函数和未知函数的各阶偏导数是线性的
自由项:在线性偏微分方程中不含及它的偏导数的项
(存在唯一性定理)考虑带初值的一阶常微分方程,其中函数
连续可微,设在矩形区域
上,若
,则在区间
上方程的解存在且唯一,其中
存在唯一性定理的延伸:
1、条件放宽到连续且关于y满足Lipschitz条件时仍然具有唯一性;
Lipschitz条件:(唯一性的充分不必要条件)
对于一个函数
如果对于点
的某一邻域内的任意两点
和
满足不等式
则称这个不等式是Lipschitz条件,
是Lipschitz常数,
是关于
的Lipschitz函数。
注1:上述不等式中,
表示任意的p范数
,
注2:不同类型的范数不影响是否满足Lipschitz条件的判断,只影响Lipschitz常数的大小。
注3:Lipschitz常数
不是唯一的。如果找到一个常数使得上述不等式成立,那么比这个数大的所有常数都可以使上述不等式成立,这些常数都是符合条件的利普希茨常数。
2、条件放宽到关于 y 满足Osgood条件时仍然具有唯一性;
Osgood条件:(仍然是唯一性的充分不必要条件)
设
在区域
内连续,如果对区域内任意的
,有
其中
是
的连续函数,并且
,则称
对y 满足Osgood条件。
3、条件放宽到连续时,解具有存在性,但是无法保证唯一性(Peano存在性定理);