RL分数阶微积分

将积分和导数统一

重新表示n重积分为下面这个函数,n为整数
f ( − n ) ( t ) = ∫ a t d τ 1 ∫ a τ 1 d τ 2 . . . ∫ a τ n − 1 f ( τ ) d τ (1) f^{(-n)}(t)=\int^t_a\mathrm{d}\tau_1\int_a^{\tau_1}\mathrm{d}\tau_2...\int_a^{\tau_{n-1}}f(\tau)\mathrm{d}\tau\tag{1} f(n)(t)=atdτ1aτ1dτ2...aτn1f(τ)dτ(1)
一层一层的交换积分顺序可知
f ( − n ) ( t ) = 1 Γ ( n ) ∫ a t ( t − τ ) n − 1 f ( τ ) d τ (2) f^{(-n)}(t)=\frac{1}{\Gamma(n)}\int^t_a (t-\tau)^{n-1}f(\tau)\mathrm{d}\tau\tag{2} f(n)(t)=Γ(n)1at(tτ)n1f(τ)dτ(2)
引入记号 D − k f ( t ) D^{-k}f(t) Dkf(t) 表示对 f ( t ) k f(t)k f(t)k重积分,对(2)在k重积分
f ( − k − n ) ( t ) = 1 Γ ( n ) D − k ∫ a t ( t − τ ) n − 1 f ( τ ) d τ (3) f^{(-k-n)}(t)=\frac{1}{\Gamma(n)}D^{-k}\int^t_a (t-\tau)^{n-1}f(\tau)\mathrm{d}\tau\tag{3} f(kn)(t)=Γ(n)1Dkat(tτ)n1f(τ)dτ(3)

RL分数阶积分

定义
将(2)中整数n改为实数p(p>0),
a D t − p f ( t ) = 1 Γ ( p ) ∫ a t ( t − τ ) p − 1 f ( τ ) d τ (4) _aD^{-p}_tf(t)=\frac{1}{\Gamma(p)}\int^t_a (t-\tau)^{p-1}f(\tau)\mathrm{d}\tau\tag{4} aDtpf(t)=Γ(p)1at(tτ)p1f(τ)dτ(4)
性质1
只要函数连续就有
lim ⁡ p → 0 a D t − p f ( t ) = f ( t ) = a D t 0 f ( t ) (5) \lim_{p \to 0}{ _aD^{-p}_tf(t)}=f(t)= _aD^{0}_tf(t)\tag{5} p0limaDtpf(t)=f(t)=aDt0f(t)(5)
性质2
和整数阶一样,分数阶积分可以交换顺序
a D t − q ( a D t − p f ( t ) ) = a D t − p ( a D t − q f ( t ) ) = a D t − p − q f ( t ) (6) _aD^{-q}_t(_aD^{-p}_tf(t))=_aD^{-p}_t(_aD^{-q}_tf(t))=_aD^{-p-q}_tf(t)\tag{6} aDtq(aDtpf(t))=aDtp(aDtqf(t))=aDtpqf(t)(6)

RL分数阶导数

定义
由(3)可知,当k>0时 D k f ( t ) D^{k}f(t) Dkf(t) 表示求导
f ( k − n ) ( t ) = 1 Γ ( n ) D k ∫ a t ( t − τ ) n − 1 f ( τ ) d τ (7) f^{(k-n)}(t)=\frac{1}{\Gamma(n)}D^{k}\int^t_a (t-\tau)^{n-1}f(\tau)\mathrm{d}\tau\tag{7} f(kn)(t)=Γ(n)1Dkat(tτ)n1f(τ)dτ(7)
将n用 α \alpha α代替 α ∈ ( 0 , 1 ] , k − α > 0 , k \alpha\in(0,1],k-\alpha>0,k α(0,1],kα>0,k是整数
a D t k − α f ( t ) = 1 Γ ( α ) d k d t k ∫ a t ( t − τ ) α − 1 f ( τ ) d τ (8) _aD^{k-\alpha}_tf(t)=\frac{1}{\Gamma(\alpha)}\frac{d^k}{dt^k}\int^t_a (t-\tau)^{\alpha-1}f(\tau)\mathrm{d}\tau\tag{8} aDtkαf(t)=Γ(α)1dtkdkat(tτ)α1f(τ)dτ(8)
用p代替 k − α , p ∈ [ k − 1 , k ] k-\alpha,p\in[k-1,k] kα,p[k1,k],按照积分定义(4)
a D t p f ( t ) = 1 Γ ( k − p ) d k d t k ∫ a t ( t − τ ) k − p − 1 f ( τ ) d τ = d k d t k ( a D t − ( k − p ) f ( t ) ) (9) _aD^{p}_tf(t)=\frac{1}{\Gamma(k-p)}\frac{d^k}{dt^k}\int^t_a (t-\tau)^{k-p-1}f(\tau)\mathrm{d}\tau\\=\frac{d^k}{dt^k}(_aD^{-(k-p)}_tf(t))\tag{9} aDtpf(t)=Γ(kp)1dtkdkat(tτ)kp1f(τ)dτ=dtkdk(aDt(kp)f(t))(9)

性质1
当p等于整数时,(9)定义的导数和经典导数是一样的

先积分后求导

性质2
RL导数存在左逆,即同阶先积分后求导等于原函数
a D t p ( a D t − p f ( t ) ) = f ( t ) (10) _aD^{p}_t(_aD^{-p}_tf(t))=f(t)\tag{10} aDtp(aDtpf(t))=f(t)(10)
性质3
函数连续
如果积分的阶大于导数阶,结果是一个积分
如果积分的阶小于导数阶,结果是一个导数(前提是这个导数存在)
a D t p ( a D t − q f ( t ) ) = a D t p − q f ( t ) (11) _aD^{p}_t(_aD^{-q}_tf(t))=_aD_t^{p-q}f(t)\tag{11} aDtp(aDtqf(t))=aDtpqf(t)(11)

先求导后积分

性质4
按定义证明,分部积分会多出来一部分。
a D t − p ( a D t p f ( t ) ) = f ( t ) − ∑ j = 1 k [ a D t p − j f ( t ) ] t = a ( t − a ) p − j Γ ( p − j + 1 ) (12) _aD^{-p}_t(_aD^{p}_tf(t))=f(t)-\sum^k_{j=1}[_aD^{p-j}_tf(t)]_{t=a}\frac{(t-a)^{p-j}}{\Gamma{(p-j+1)}}\\\tag{12} aDtp(aDtpf(t))=f(t)j=1k[aDtpjf(t)]t=aΓ(pj+1)(ta)pj(12)
更普通的有

a D t − p ( a D t q f ( t ) ) = a D t q − p f ( t ) − ∑ j = 1 k [ a D t p − j f ( t ) ] t = a ( t − a ) p − j Γ ( p − j + 1 ) (13) _aD^{-p}_t(_aD^{q}_tf(t))=_aD^{q-p}_tf(t)-\sum^k_{j=1}[_aD^{p-j}_tf(t)]_{t=a}\frac{(t-a)^{p-j}}{\Gamma{(p-j+1)}}\\\tag{13} aDtp(aDtqf(t))=aDtqpf(t)j=1k[aDtpjf(t)]t=aΓ(pj+1)(ta)pj(13)

( t − α ) β (t-\alpha)^\beta (tα)β的分数阶导数

和GL的联系

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值