Bland-Altman图

Bland-Altman图用于评估两组数据的一致性,特别适用于医学和数据分析。图中点的分布展示数据差异,均值位于横轴,差值在纵轴。若点集中在mean±1.96std范围内,表明一致性好。Python库如pingouin和pyCompare支持绘制此类图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍

Bland-Altman图是一种一致性评价测量方法,简称BA,常用于医学实验和数据分析。
可使用它检测两组数据的一致性,比如对比新旧两种方法,对比一组实际值和预测值等。相对于校准曲线,它能更好地对比两组数据中每个数据对的一致性。

如何看图

图中每个点代表一个实例,其横轴是预测值和实际值的均值,纵轴是其预测值与实际的差值。两条红线分别表示mean±1.96std的范围。若大部分样本点落在此范围内,则说明两种方法的测量一致性较好。如上图中最右侧的点,假设它的预测值是1,实际值是0.93,则其均值是0.965(即横坐标),其差值是0.07(即纵坐标)。

通过看图可以得到一些结论,如:

  • 可以从图中点看出数据的分布;
  • 如果图中点均分布在0附近,则说明一致性高;
  • 如果左边密集,右边分散,则说明值越小误差越小;
  • 从Y轴可以看出,数据是往上偏还是往下偏。

实现

Python 的 pingouin 和 pyCompare 包都提供 BA 作图工具,也可以使用matplotlib直接画图,详见:
Bland-Altman Plots(一致性评价)在python中的实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值