Dify进阶:在Dify对话中显示图片

最终效果呈现

在这里插入图片描述

从工作室中创建新的应用

在fify中选择工作室→创建空白应用→聊天助手→工作流编排
在这里插入图片描述
点击创建按钮之后,就会来到这么一个拖拉拽的页面。
我们可以先预览一下这个默认的聊天助手:
在这里插入图片描述
可以看到,没有什么特别的。

下面我们来介绍一个新的组件,那便是HTTP请求。
有了它,就可以在对话中显示图片了。
在这里插入图片描述
具体怎么用呢?
我们先确保自己的界面上只有这三个组件:

### 自定义 Dify 工作流配置 #### 配置基础环境 为了实现自定义的工作流,在启动任何开发之前,需确保已安装并设置了必要的依赖项和工具链。这通常涉及Node.js版本管理器(nvm),以及通过nvm安装特定版本的Node.js来满足Dify的要求[^1]。 #### 创建新应用实例 进入Dify平台后,选择创建工作区下的空白应用程序选项,并指定该应用为聊天助手类型。对于工作流编排模式的选择上,推荐采用“进阶”模式以便于后续更灵活地调整各个节点之间的交互逻辑[^4]。 #### 设计工作流架构 在选择了合适的应用模板之后,下一步就是规划整个对话处理过程中的各个环节。此阶段主要围绕着消息接收、意图识别、响应生成这几个方面展开设计思考。利用Dify提供的可视化编辑界面可以直观地拖拽组件构建起初步框架结构。 #### 添加外部服务集成 当基本流程搭建完毕后,可根据实际需求引入第三方API作为增强功能的一部分。例如,借助Cloudflare Workers技术栈快速完成对外部接口调用的支持,从而让聊天机器人具备访问天气预报、新闻资讯等实时数据的能力[^3]。 #### 测试与优化迭代 最后也是至关重要的一步是对所建立起来的工作流进行全面测试,检查是否存在潜在漏洞或性能瓶颈等问题。基于反馈不断改进直至达到预期效果为止。期间可能涉及到微调参数设定或是替换某些效率较低的操作环节以提高整体运行质量[^2]。 ```python # 示例代码片段用于展示如何连接到外部API import requests def fetch_external_data(api_url, params=None): response = requests.get(url=api_url, params=params) if response.status_code == 200: return response.json() else: raise Exception(f"Failed to retrieve data from {api_url}") ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

几道之旅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值