PIPIOJ 1470: 中等迷宫问题 bfs

26 篇文章 0 订阅

http://pipioj.online/problem.php?id=1470
在这里插入图片描述
思路: s t e p x y k step_{xyk} stepxyk表示从起点 S S S出发到 ( x , y ) (x,y) (x,y)还能使用 k k k次遁地时所需要的最少步数, b f s bfs bfs保证按照最少次数扩展,简单搜索题。舍友非得追着我问为啥标记数组是三维的,二维的怎么不对呢?唉,没理解搜索的本质啊,二维的少了一维状态,简单来说没用遁地到达 ( x , y ) (x,y) (x,y)和用了遁地到达 ( x , y ) (x,y) (x,y)完全是两个不同的状态,不能一概而论啊。附上一个检验用的样例:

3 5 1
S....
####.
T###.

正解是5,如果得到的结果是-1的话就要好好思考思考了。

#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;

const int maxn=505;

struct node
{
    int x,y,ck;
    node(int x=0,int y=0,int c=0):x(x),y(y),ck(c){}
};

int n,m,k;
char s[maxn][maxn];
int step[maxn][maxn][11];
int d[4][2]={{1,0},{0,1},{-1,0},{0,-1}};

inline int bfs(int sx,int sy,int tx,int ty)
{
    memset(step,-1,sizeof(step));
    queue<node> q;
    step[sx][sy][k]=0;
    q.emplace(sx,sy,k);
    while(!q.empty())
    {
        node f=q.front();
        q.pop();
        int dx,dy;
        for(int i=0;i<4;i++)
        {
            dx=f.x+d[i][0];
            dy=f.y+d[i][1];
            if(dx>=0&&dx<n&&dy>=0&&dy<m&&s[dx][dy]!='#'&&step[dx][dy][f.ck]==-1)
            {
                step[dx][dy][f.ck]=step[f.x][f.y][f.ck]+1;
                if(dx==tx&&dy==ty)
                    return step[dx][dy][f.ck];
                q.emplace(dx,dy,f.ck);
            }
        }
        if(f.ck)
        {
            dx=n-1-f.x;
            dy=m-1-f.y;
            if(s[dx][dy]!='#'&&step[dx][dy][f.ck-1]==-1)
            {
                step[dx][dy][f.ck-1]=step[f.x][f.y][f.ck]+1;
                if(dx==tx&&dy==ty)
                    return step[dx][dy][f.ck-1];
                q.emplace(dx,dy,f.ck-1);
            }
        }
    }
    return -1;
}

int main()
{
    scanf("%d%d%d",&n,&m,&k);
    for(int i=0;i<n;i++)
        scanf("%s",s[i]);
    int sx,sy,tx,ty;
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<m;j++)
        {
            if(s[i][j]=='S')
                sx=i,sy=j;
            else if(s[i][j]=='T')
                tx=i,ty=j;
        }
    }
    printf("%d\n",bfs(sx,sy,tx,ty));
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值